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In principle we can stop here. In addition this can be simplified by

substitution as follows
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ie. the new version of the decision :nechanism looks ke this.




Example :

o X(uw)= [ 10} 4+ N{u)

Hy X(u):{_‘}w}w(m

where
4 2

The above example has the following pictorial representation.

However Ky #1
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Also, sTE v 7's; = 5§ Kn"lsg
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So the decision rule is
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We can eliminate the constant factor to get the following decision rule
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To understand the slope of the decision boundary we write the K-L ex-
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ie. N{u) = VAW, (u)e, + V8Wy{u)e,. In order to perform the above,
we have assumed that Ky~ ' exists, that is the components of the noise
are not linearly dependent. What would happen however if Ky were
singular, i.e. if A; =07

This is the case of singular detection, in which a perfect decision can be

pansion of the noise :

made!
Example : Let us use the same signals as before
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The two noise components are linearly dependent. i.e.
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S0 if we project along e, which iz the eigenvector with zere cigenvalue,

we can me e an unambiguous decision { i.e. with no errors ) Since
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the decision rule is

(6,,X) == =331 + X5 < 0

We have the following general statement:
Suppose Ky is singular, with A; = 0 and some elgenvactor e, correspond-

ing to Ay . Then




these are the only
possible paths of
observation of X
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