il. Directional preference

Suppose we are given the covarlance matrix Ky of some vector X{u)
and would Like to project this vector on some unit-length vector b (
i.e. sum™ b* =1 ). The projection is in the inner product sense

e

¥ () = (b, X(w)) = X(u)"D
Lets assume that mmy = 0 and let’s calculate the variance of Y (w):

var{V{u)} = oy®=E{Y*(u)} =
EXY ()Y (u)} = E{07 X (u)X(u) b}
— bTK;{b

ie. the variance of Y{u) is a quadratic functional of the b;’s.

“Directional preference” translates to finding those directions b where
the variance is highest ( or lowest ). This is an optimization problem
where we want to maximize the above quadratic form subject to the

;
norm constraint. To do that, project b on the e.’s which form an 9{
orthonormal basis. ;

b= sz‘@i

so that 3% . b;° = 1. |
We can also rework the quadratic form as follows: 5

oy? = BTKyb =3 bie, Kx(Y bse))
i i [N
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But Kye; = Aje; because all the e;’s are eigenvectors of Ky. So ;
ov? = D2 bibieMe;
= DD Mbibele, ;
T

or

oy? = Abiy

An equivalent problem is the following: Let u; < 5:2 and we want to

maximize =%, A\ju; = U subject to the linear constraint 377, u; =1
and u; > 0,A; > 0 This is a standard linear programming problem.
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Example :

For As > Ay the optimal colution is u; = 0, us = 1. The general solution
is to choose u; = 1 where A; = maz{;} and u; = 0 for 1 £ 7.

ie. mince b2 = 1 it follows that b; =+1, b, =0, 35 e

The resulting variance is the maximum cigenvalue

O'Y2 = )\j

But recall that

T

b = Z bigi = bma:t: = (gimcm)
=1
i.e. the direction that maximizes the variance is the direction of the

eigenvector corresponding to the largest eigenvaliue. Another kind of use

of the correlation ( or covariance ) matrix is in deriving certain irmportant
inequalities, which are useful in probability in bounding probabilities of
events. Inequalities are convenient to work with whenever ezact calcula-

tion of probabilities is prohibitive in terms of complexity.

The Chebyshev Inequality

One such widely used inequality s the Chebychev inequality, extended
to random vectors. The goal is to upperbound the probability that the

length of a vector exceeds a certain number
Pr{iX()| > ¢} < g{¢)
Suppose we are given Ryx. Then

ir(Ry) = Rx(L,1)+-+ Bxlnn)
- Y E(XA)

= E{X()'}
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because the first term is ommited, being nonnegative. We now observe
that

n(By) > €[ [ fxloa

pU———
[Xl>e

> e Pr{{X|> ¢}
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é‘ Pr{ix| > & < 7B
This is the vector version of the Chebychev inequality. Notice that as e
increases, it is less likely to get vectors with large length. The inequality ;
is general and does not require that X have zero mean.
We next examine in more detail the scalar case, where X(u) = z(u)

E{XE

Pr{j X(u) > e} < {2 ) i

Suppose that my # 0 and define the normalized r.v. 4
yodef X = mx

TX

sty e e g S e 430

Then
E{X}=0, var{X'} =1

Applying the Chebychev inequality for ' we get

; 1
Pr{X|> b <5

X —mxy 1
= PT{—ﬂ>E]S7
ox €
i
= Pr{lX —mx|>eox} < —
€
1
= PT{X>mX+eJXUX<mX—Eo*x}§§
ﬁ“

Regarding the tightness of the inequality we look at a specific example
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and let us choose the Gaussian case i.e.
X ~ G(myx ; ox?)
and also define the Gaussian tail integral
o0 1 2
— -z /2 1
) = c zZ
Q)= [ o

so the cumulative distribution function is

1 - Q(z) = Fx{z)
Then
Pr{|X —mx| > ecox} = Pr{|X'| > ¢} = 2Q(¢)
Another important application of the Chebychev inequality is the “weak

v ‘\E')

e
-z

law of large numbers . Suppose that we have a sequence of indep endent,
identically distributed ( i.i.d. ) random variables X;, ¢ =1,2,..., all
with mean my and variance ox?. Consider the first N. Based on those

we create the “ sample mean 7, a 1.v.

1 &

m(u) = I Z X;

i=1

The ensemble average ( mean ) of this “ {ime average 3 T

T o
E{m{u)} = W S E{Xiy =mx
i=1
Regards the variance of m(u),

on? = £{(mlu)— E{m()N)’}

- g{{%éxi‘?\f}?xr}
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From Chebyshev inequality we conclude that

O'X2

Ne?

= Pr{|m{u} —mx |> e} <

We can see now that as

» et )

N—oom

: L e
= lm PT{.FZ‘Xi—_mX
=1

>e}=0

for every €, which is the weak law of large numbers.

2.3 The whitening concept

This is the converse to the factorization or spectral shaping or coloring
problem. There, given W(u) we wanted to find U such that HW(x) had
a given K. Here we are given a random vector X(u) with some mean
my and covariance Ky and we would like to find a linear transformatin
G such that the output is a white vector W(u).

Lomy = 0




