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Definition 2.2.2 A complez { real ) matriz 4 is called unitary ( orthog-
onal) tff
AT =1

Some facts about Hermitian symmetric matrices can be found in a text-
book by k. Bellman, “Introduction to matrix analysis” Mc Graw Hill,
1970.

Theorem 2.2.1 If K is Hermitian symmetric then there ezisis a uni-
tary matriz E such that

K = EAET

where

0 An
with ); the eigenvalues of K, not necessartly distinct.

In other words, Hermitian symmetric matrices are always diagonalizable

Theorem 2.2.2 A necessary and sufficient condition for such a K to
be nonnegutive definite is that \; >0 Vi=1,....n

Theorem 2.2.3 Let K be Hermitian symmetric. Then for each distinct
( simple ) eigenvalue there corresponds an eigenvector which s orthogo-
nal to all others. To each eigenvalue of mulitiplicity k there correspond k
linearly independent eigenvectors, which are orthogonal to all eigenvec-
tors of other eigenvelues.

However we can always perform a Gram-Schmit orthogonalization proce-
dure and end up with k orthogonal eigenvectors. Tn summary, every Her-
mitian (n x n) matrix has n associated orthogonal eigenvalues {ei}i=1 -
In fact the matrix E of theorem 1 consisis of these e;’s as 1ts columns.

Returning to the factorization problem we wanttofindan H 3 Ry =

HI;I*T. We know that

Ry = BABEY
E}Alﬂf_\l/?‘E*T
where
Vi 0 0 0
Al/2 def 0 vAz 0 0 (A1/2)*T
- 0 Q . 0 -
0 0 0 \f);




Eéi/z-&l/z*TE*T
(Eé-l,,’Z)(E&l/?)*T

4
I
ba

|

i.e. we arrived a t solution where
I;I - EAIJ’Z

There exists the question of whether {his solution is unique or not. The
answer is no. To see this take any unitary matrix U 3 Ut = 1L
Then

Ry = (BAY)LEAYYY
= (EAV?U) (EAY2U)
N et
= anotherHd
Sometimes we take U = E*T and the resulting
H - EA*TE*T

is called the “ square root 7 of Ry since then H is Hermitian symumnetric.
From an applications viewpoint this is useful in simulation, i.e. creating
o random vector with desired correlation properties, starting from a ©
random number generator 7.

Note :

If my # 0, then the appropriate linear transformation is
X= HW -+ oy

where the factorization is done on Ky, not Ry.

Example :

Given the covariance matrix

1 —1/2 —1/2
Ky=|-1/2 1 -1/2
L P

we find the eigenvalues by solving

det(Ky — X)) =0
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;‘»)\1:0,)\3:)\3=3/Z

Solving for the eigenvectors we get

1
1
A =0 = e = — 1
1 1 \/:0)- .
1 (1
=82 = =] il
n 142
€g — g 1/2
b =il
So we could choose a linear transformation i
|
0 0 i
H= EAY? = ler | ea | &) \/3/2
0 o)
0 3/2 1/2 ' i
= |0 —/3/2 1/2
o o0 -1 4
0 3/2 1/2 Wiu,1) 3
=X=HW=|0 —/3/2 1/2 || W2 ;
o o —1]LWm3
Notice that X does not depend on W (u,1). In the above we solved the kx
problem of spectral shaping which is equivalent to a covariance matrix '
factorization. The solution was unconstrained i.e. we imposed no re-
strictions on the nature of the linear transformation H. We can pose §
an associated question : Can we find a causal matrix H for the same 2
factorization job 7 :
;

Definition 2.2.3 In this context, causal means lower triangular i.e.

h’ll 0 G
X(u,1) e W(T-L, 1) .
- . . : At ¢

X(u,gjj Aol . Ha. W(w,n)
-




or .
X(u,i) = hiW(u,7)
=1

This is called the Cholesky Decomnposition of positive definite matrices.
We restate the problem as follows: Find a lower-triangular matriz H such
that

foy = Hdl
Example :
For the real case
Fiw ke oo ke hyy 0O - 0 hir har -+ ha
kiz . | _ fiar haa 0 ho
E E e 0 :
kln - knn hnl e hnn 0 hnn

From hllz = kll = hll = j:\/ kll

= kig = hothyy = ha =

In the same manner we can find the rest of the h;;.

Using the concept of covariance factorization we can derive a set of in-
sightful properiies:

i. Spectral resolution
Assume a real covariance matrix Ky. From the theory we know that
K can be decomposed as

KX = EAET

where
E:[§1|§2 ‘ “'lgn}

is the matrix of orthonormal eigenvectors of Ky and

A 0

>
I

0 i




is the diagonal matrix of nonnegative eigenvalues. We can rewrite

this ar¢
( (_31T -]
§2T
Ky =g | deen |- | Anen) :
e, |
or

This shows that Ky can be decomposed ( resolved ) into a sum of
n matrices, each of the form e.e;”, with weight X;. The set of n
eigenvectors {e;}7o, constituies 1 basis for the n-dimensional vector

space and each deterministic vector A can be expanded into a series

n

A=> aieg

i=1
where
T
a; = (8,&) = A&

Qo far we have determined that given some covariance matriz Ky,
we can find its n orthonormal etgenvectors & and use them as a basis
of an n-dimensional vector space. Each deterministic vector A can
be described in terms of its ¢ projections ” a; along the ¢; coordinate.
It is also clear that we can create random vectors by choosing these
projections to be random variables A;{u) ,i.e.

A= Adu)e

i=1

Note : If the eigenvectors have the form e; = -1 0)F with
1 in the 7*" position then

Ai{u)
A=
A, (u)

The question arises whether these random coefiicients A;(u) can be
chosen in such a way that the resulting A is actually X(u) i.e. the
vector whose covariance is the given one Ky. We will answer that
later { whitening ). Note that whitening is the reverse problem to “

coloring 7 or “ spectral shaping 7.
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