


2. Random sinusoid

X(u,t) = sin{t + ¢{u))

e{X(u,n)} = [ sinlt+é)ful¢)ds

2
— 51;/0 sin(t + ¢)dp =0 V1
1 2 . )
= 5;[) sin(t, 4 ¢)sin(ty + ¢)dg =0
1 1 2
= - /0 [cos{ty — t2) — cos{ty + 1z + 2¢)|d¢

1
= 5608('51 — tz)

Notice that the autocorrelation depends only on the difference ty —1» and n
t; or t, individually.
It is natural to ask the question : Are there any restrictions ( or properties

imposed on a function Rx(%;,ts) in order for it to be a legitimate correlati
function 7

Example 1

Can Rx(ti,t,) = —1bea correlation function ?
T4 holds that X?(u,t;) = 0. So Rx(t1,t1) = E{X?*(u,t1)} = 0 Then -1 1s1

a legitimate choice.
Example 2

What about the function with Kx (1,4} = 0.8, Kx(ti,t2) = =1, # 12

We list below some properties than any autocorrelation or covariance funct
must satisfy.
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(b) the correlation function Rx(t1,12) must be hermitian symmelric i.e.
Ry (t1,12) = Ra* (T2, 1)

Proof:

by definition

Rx(ts,te) & E{X(u,t1)X*(u,12)}
= E{X*{u,t:)X (u,t:)}
5{[X(“>12)X*(uat1)]*}

= E{X(u,t2)X*(u,t1)} ged

(c) The correlation function must be a monnegative definitte function :

Definition 1.8.1 A complez function Rx(t1,%2) is called nonnegati
definite iff for any choice of n complex numbers ay,ds,.--,an and eves
n-tuple (t1,%2, ... stn), 1t is true that

T 1

SO aiatjRx(ti,t;) 2 0 ®

=1 j=1

Proof:

We prove the necessary part, i.e. that if Ryx(t1,t2) is a correlation fun
tion for some process X (u,t), then ® holds

T kil

S aat;Rx(tsty) =

=1 7=1

° n

= Z Z a;a*jE{X(u,ié)X*(uvij)}

i=17=1

= Sl wX ()] ) >0

The converse will be proven later.




(d) The correlation function must satisfy the Schwartz inequality

Rx(ts, 1)) < y/Rx(t1, 1)y Rx (t, 1)

Proof:
For the real case we must show that
Rx*(ti,t2) € Rx{t1,11)Bux(t2,%2)
Consider
E{{X{u,ty) + aX(u, )]’} > 0
foranya € R
= S{Xz(u,tl) + a2X2(u,tg) -+ ZGX(u,tl)X(u,tgj} 2 0

= RX('tl,t1) -+ ClzRX(izjtg) +2aRx(t1,t2) Z 0

The above holds for all a! Viewed as a parabola with respect to a, the
above binomial is negative if its discriminant is nonpositive i.e.

4Rx(t1,t2) — 4Rx (11, 1) Bx{t2,12) £ 0
Note that in example 2 above, teh function is illegitimate because

| — 1] £+/0.8/038

We can express Rzzﬁ(il,tg) of a complex process
Z(u,t) = X (u,t) + jY (u,t)

in terms of real quantities namely the autocorrelation and cross correlas
tion of its real and imaginary parts as follows

Rzz»(h,iz) = £ {Z(u,tl)Z*(u,tg)} .

= E{(X(u,tr) 4 7Y (u, 1)) (X (u,ta) + 7Y (w,12))7}

= [RXX(tlatz) + RYY(fhtz)] + 7 [RYX(fhtz) — Ryv(t1,t2
Notice that Ryx{ti,t2) = Ryxy{t1,t2) # Rxy(ti,t2) i.e. the symmetr

property does not hold for crosscorrelations. One could ask the followin,
question : Why not define

Rzz(ti,ta) = E{%(x, 11)2 (u,t2)}

and call that a correlation function for a complex process Z{u,t) 7 Th
reason is that this is not a nonnegative definite function. In the nex
chapter we extend these notions to random veciors.

9

e B e P .S




The correlation function must satisfy the Schwartz inequality

Ry(fa,12)] < /R (te, 1)/ R (t2:2)

Proof:
For the real case we must show that
Ryx?(t1,t2) < RX(tlatl)RX(t27t2)
Consider
g{[X(u,tl) + QX(U;,fz)]z} 2 0
forany a € R
= E{X*{u,t)) +a* X?(u,t2) + 2aX (u, )X (u,t2)} > 0

= Rx(tj_,tl) + azRX(t2,i2) + QG,RX(tl,tz) 2 0

The above holds for all a! Viewed as a parabola with respect to a, the
above binomial is negative if its discriminant is nonpositive l.e.

4Rx2(t1,t2) — 4Rx (1, ta) Rx (2, 82) <0
Note that in example 2 above, teh function is illegitimate because

|- 1] £+/0.8V0.8

We can express Rzz-(t1,12) of a complex process
Z(u,t) = X(u,t) + 3Y (u,t)

in terms of real quantities namely the autocorrelation and cross correla-
tion of its real and imaginary parts as follows

RZZ'(tlu\i?) = S{Z(u,tl)Z*(u,tZ)} :
£ {(X (w,ta) + §Y (u,12)) (X (w,12) + 7Y (w,8:))"}
= [Rxx(tists) + Ryy(trt2)] + 7 [Ryx(t:,t2) — Rxy(t1,12)]
Notice that Ryx(t1,t2) = Ryy(ti,t2) # Ryy(t:,12) i.e. the symmelry

property does not hold for crosscorrelations. One could ask the following
question : Why not define

Ryz(t,ta) = E{ F(u, 1) Z(u,t2)}

and call that a correlation function for a complex process Z(u,t) 7 The
reason is that this is not a nonnegative defimite function. In the next
chapter we extend these notions to random vectors.



Chapter 2

RANDOM VECTORS

2.1 Definition - Correlation and Covariance
matrix

Random =ctors come about either by “sampling” one random pro-
cess X{u,t) at i1,%2,...,1n OT by “observing” a number of processes
Xa(u,t), Xa(u,t),... , Xn(u,t) at the same time. Essentially the two ways
are equivalent mathematically. Let
X(u,1) mx(1)
def ) - def .
X{u) = : E{X{u)} = -
X(u,n) mx(n)

Then the autocorrelation function is

Ry = E{X()X(u)}

X(u,1)
= £ : [X (u,1)y. 00, X(u,n)]"
X(u,n)
Rx(1,1) Rx(1,2) ... Rx(1,n)
_ Rx(2,1) .
Rx(n,1) . . Rx(n,n)
The covariance matrix is
Ky & £{X(u)—my][X(s) - my]"}
= XX T (w)} — mpE{X (1)}
- E{¥(w) g




2.2 Linear transformations - Spectral shap-
ing and factorization

Suppose we are given a random vector X(u) and we construct another
random vector Y(u) through the linear transformation

Yo) = BX@)
(m,1) = (m,n)z(n,1)

The question that we pose is © what is the second-moment description
of Y(u) ? ” We first look at the mean of Y(u)

E{Y (u, 1)} S TN £{X(x,1)}
my = E{Y(u)} = z = S :
ELV (w,m)} o e B | E{X (u,n)}

—_—,

= |my = Hmy

In the above derivation we claimed that
8{2 hjiX(u: 1)} ;— Z hjig{X(u) %)}
=1 =1

In other words we- assumed that expectation and summation can be in-
terchangei but this holds only if Rx(f,t) is finite { i.e. the variance.is
ﬁmte ). For the autocorrelation function of ¥ :
Ry = E{Y()Y"(u)}
= E{HX(w)(HE(u)"}
= EEXWXT(WHT)
= @ Ry H*T = Ry

A useful concept is that a “white” veclor, W(u}, which is a randon vector
with

and




where o is a constant and [ is the identity matrix. This means that all
components W; of W are uncorrelated with all others, all have zero mean

and variance 2.

There arises the question of spectral shaping: “GFiven a white vector

W(w), can we find a linear transformation such that the resultant vector
X(u) has a given mean my and a given covariance matrix Kx 77 We

1‘
v
s

can answer this question by looking at our previous results. The mean
is my = Hmy where H is the linear transformation ( i.e. matrix ) that
we are looking for. Since my =0 it follows that my = 0. Consequently

BX = HBWI:I*T
JzﬁlH*T

LEX _ ounT

Therefore spectral shaping is equivalent to the following: Given a corre-
lation matrix Ry find an H such that Ry = HH*T

or

Note ;

o? can be absorbed in the given Ry by creating a “new” given Ry. Other
names for this problem are “matrix factorization”, “square root of a ma-
trix”

Brief review of linear algebra

Definition 2.2.1 A complez ( real ) matriz 4 18 called Hermitian sym-
metric ( symmetric ) iff

A:A*T




