

F1-5

2. Random sinusoid

$$X(u,t) = sin(t + \phi(u))$$

$$\mathcal{E}\{X(u,t)\} = \int_0^{2\pi} \sin(t+\phi) f_{\phi}(\phi) d\phi$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \sin(t+\phi) d\phi = 0 \quad \forall t$$

$$R_X(t_1, t_2) = \mathcal{E}\{\sin(t_1 + \phi)\sin(t_2 + \phi)\}\$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \sin(t_1 + \phi)\sin(t_2 + \phi)d\phi = 0$$

$$= \frac{1}{2\pi} \frac{1}{2\pi} \int_0^{2\pi} [\cos(t_1 - t_2) - \cos(t_1 + t_2 + 2\phi)]d\phi$$

$$= \frac{1}{2}\cos(t_1 - t_2)$$

Notice that the autocorrelation depends only on the difference $t_1 - t_2$ and n t_1 or t_2 individually.

It is natural to ask the question: Are there any restrictions (or properties imposed on a function $R_X(t_1, t_2)$ in order for it to be a legitimate correlation function?

Example 1

Can $R_X(t_1,t_2)=-1$ be a correlation function? It holds that $X^2(u,t_1)\geq 0$. So $R_X(t_1,t_1)=\mathcal{E}\{X^2(u,t_1)\}\geq 0$ Then -1 is a legitimate choice.

Example 2

What about the function with $K_X(t_1,t_1)=0.8$, $K_X(t_1,t_2)=-1,t_1\neq t_2$? We list below some properties than any autocorrelation or covariance function must satisfy.

- (a) Any well defined function $m_X(t)$ can be the mean function $\mathcal{E}(x,t)$ of a process
 - (b) the correlation function $R_X(t_1, t_2)$ must be hermitian symmetric i.e.

$$R_X(t_1, t_2) = R_x^*(t_2, t_1)$$

Proof:

by definition

$$R_{X}(t_{1}, t_{2}) \stackrel{\text{def}}{=} \mathcal{E}\{X(u, t_{1})X^{*}(u, t_{2})\}$$

$$= \mathcal{E}\{X^{*}(u, t_{2})X(u, t_{1})\}$$

$$= \mathcal{E}\{[X(u, t_{2})X^{*}(u, t_{1})]^{*}\}$$

$$= \mathcal{E}^{*}\{X(u, t_{2})X^{*}(u, t_{1})\} \qquad qed$$

(c) The correlation function must be a nonnegative definite function:

Definition 1.3.1 A complex function $R_X(t_1, t_2)$ is called nonnegative definite iff for any choice of n complex numbers a_1, a_2, \ldots, a_n and even n-tuple (t_1, t_2, \ldots, t_n) , it is true that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a^*_j R_X(t_i, t_j) \ge 0 \qquad \otimes$$

Proof:

We prove the necessary part, i.e. that if $R_X(t_1, t_2)$ is a correlation funtion for some process X(u, t), then \otimes holds

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a^*_{j} R_X(t_i, t_j) =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a^*_{j} \mathcal{E} \{ X(u, t_i) X^*(u, t_j) \}$$

$$= \mathcal{E} \{ |\sum_{i=1}^{n} a_i X(u, t_i)|^2 \} \ge 0$$

The converse will be proven later.

(d) The correlation function must satisfy the Schwartz inequality

$$|R_X(t_1, t_2)| \le \sqrt{R_X(t_1, t_1)} \sqrt{R_X(t_2, t_2)}$$

Proof:

For the real case we must show that

$$R_X^2(t_1, t_2) \le R_X(t_1, t_1) R_X(t_2, t_2)$$

Consider

$$\mathcal{E}\{[X(u,t_1) + aX(u,t_2)]^2\} \ge 0$$

for any $a \in \mathcal{R}$

$$\Rightarrow \mathcal{E}\{X^{2}(u, t_{1}) + a^{2}X^{2}(u, t_{2}) + 2aX(u, t_{1})X(u, t_{2})\} \ge 0$$
$$\Rightarrow R_{X}(t_{1}, t_{1}) + a^{2}R_{X}(t_{2}, t_{2}) + 2aR_{X}(t_{1}, t_{2}) \ge 0$$

The above holds for all a! Viewed as a parabola with respect to a, the above binomial is negative if its discriminant is nonpositive i.e.

$$4R_X^2(t_1, t_2) - 4R_X(t_1, t_1)R_X(t_2, t_2) \le 0$$

Note that in example 2 above, teh function is illegitimate because

$$|-1| \not \leq \sqrt{0.8} \sqrt{0.8}$$

We can express $R_{ZZ^*}(t_1,t_2)$ of a complex process

$$Z(u,t) = X(u,t) + jY(u,t)$$

in terms of real quantities namely the autocorrelation and cross correlation of its real and imaginary parts as follows

$$R_{ZZ^*}(t_1, t_2) = \mathcal{E} \{ Z(u, t_1) Z^*(u, t_2) \}$$

$$= \mathcal{E} \{ (X(u, t_1) + jY(u, t_1)) (X(u, t_2) + jY(u, t_2))^* \}$$

$$= [R_{XX}(t_1, t_2) + R_{YY}(t_1, t_2)] + j [R_{YX}(t_1, t_2) - R_{XY}(t_1, t_2)]$$

Notice that $R_{YX}(t_1,t_2) = R_{XY}(t_1,t_2) \neq R_{XY}(t_1,t_2)$ i.e. the symmetry property does not hold for *crosscorrelations*. One could ask the following question: Why not define

$$R_{ZZ}(t_1, t_2) = \mathcal{E}\{Z(u, t_1)Z(u, t_2)\}$$

and call that a correlation function for a complex process Z(u,t)? The reason is that this is not a nonnegative definite function. In the next chapter we extend these notions to random vectors.

Proof: For the real case we must show that $R_X^2(t_1,t_2) < R_X(t_1,t_1)R_X(t_2,t_2)$

 $|R_X(t_1, t_2)| \le \sqrt{R_X(t_1, t_1)} \sqrt{R_X(t_2, t_2)}$

$$R_{X}^{-}(t_{1},t_{2}) \leq R_{X}^{-}$$
Consider
$$\mathcal{E}^{f}[X(y,t_{1})+a]$$

for any $a \in \mathcal{R}$

$$\Rightarrow \mathcal{E}\{X^2(u,t_1) + a^2X^2(u,t_2) + 2aX(u,t_1)X(u,t_2)\} \ge 0$$

$$\Rightarrow R_X(t_1,t_1) + a^2R_X(t_2,t_2) + 2aR_X(t_1,t_2) \ge 0$$
The above holds for all a! Viewed as a parabola with respect to a, the

 $\Rightarrow \mathcal{E}\{X^2(u,t_1) + a^2X^2(u,t_2) + 2aX(u,t_1)X(u,t_2)\} \ge 0$ $\Rightarrow R_X(t_1, t_1) + a^2 R_X(t_2, t_2) + 2a R_X(t_1, t_2) \ge 0$

$$\Rightarrow \mathcal{E}\{X^2(u,t_1) + a^2 X^2(u,t_2)$$
$$\Rightarrow R_X(t_1,t_1) + a^2 R_X(t_2,t_3)$$

The correlation function must satisfy the Schwartz inequality

 $\mathcal{E}\{[X(u,t_1) + aX(u,t_2)]^2\} > 0$

above binomial is negative if its discriminant is nonpositive i.e.

 $4R_{x}^{2}(t_{1},t_{2})-4R_{x}(t_{1},t_{1})R_{x}(t_{2},t_{2})\leq 0$ Note that in example 2 above, teh function is illegitimate because $|-1| / \sqrt{0.8} \sqrt{0.8}$

We can express $R_{ZZ^*}(t_1,t_2)$ of a complex process

Z(u,t) = X(u,t) + iY(u,t)

in terms of real quantities namely the autocorrelation and cross correla-

tion of its real and imaginary parts as follows

 $R_{ZZ^*}(t_1, t_2) = \mathcal{E}\{Z(u, t_1)Z^*(u, t_2)\}$ $= \mathcal{E} \{ (X(u,t_1) + jY(u,t_1)) (X(u,t_2) + jY(u,t_2))^* \}$ $= [R_{XX}(t_1, t_2) + R_{YY}(t_1, t_2)] + j [R_{YX}(t_1, t_2) - R_{XY}(t_1, t_2)]$

Notice that $R_{YX}(t_1,t_2)=R_{XY}(t_1,t_2) \neq R_{XY}(t_1,t_2)$ i.e. the symmetry property does not hold for crosscorrelations. One could ask the following question: Why not define

 $R_{ZZ}(t_1, t_2) = \mathcal{E}\{Z(u, t_1)Z(u, t_2)\}$ and call that a correlation function for a complex process Z(u,t)? The reason is that this is not a nonnegative definite function. In the next chapter we extend these notions to random vectors.

Chapter 2

RANDOM VECTORS

2.1 Definition - Correlation and Covariance matrix

Random vectors come about either by "sampling" one random process X(u,t) at t_1,t_2,\ldots,t_n or by "observing" a number of processes $X_1(u,t),X_2(u,t),\ldots,X_n(u,t)$ at the same time. Essentially the two ways are equivalent mathematically. Let

$$\underline{X}(u) \stackrel{\text{def}}{=} \left[\begin{array}{c} X(u,1) \\ \vdots \\ X(u,n) \end{array} \right] \quad \mathcal{E}\{\underline{X}(u)\} \stackrel{\text{def}}{=} \left[\begin{array}{c} m_X(1) \\ \vdots \\ m_X(n) \end{array} \right]$$

Then the autocorrelation function is

$$\begin{array}{rcl}
\mathbf{R}_{X} & = & \mathcal{E}\{\underline{\mathbf{X}}(u)\underline{\mathbf{X}}^{*T}(u)\} \\
& = & \mathcal{E}\left\{\begin{bmatrix} X(u,1) \\ \vdots \\ X(u,n) \end{bmatrix} [X(u,1),\ldots,X(u,n)]^{*}\right\} \\
& = & \begin{bmatrix} R_{X}(1,1) & R_{X}(1,2) & \ldots & R_{X}(1,n) \\ R_{X}(2,1) & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ R_{X}(n,1) & \ddots & \ddots & R_{X}(n,n) \end{bmatrix}
\end{array}$$

The covariance matrix is

$$\begin{split} \underline{\mathbf{K}}_{X} &\stackrel{\mathrm{def}}{=} & \mathcal{E}\{[\underline{\mathbf{X}}(u) - \underline{\mathbf{m}}_{X}][\underline{\mathbf{X}}(u) - \underline{\mathbf{m}}_{X}]^{T^{*}}\} \\ &= & \mathcal{E}\{\underline{\mathbf{X}}(u)\underline{\mathbf{X}}^{*T}(u)\} - \underline{\mathbf{m}}_{X}\mathcal{E}\{\underline{\mathbf{X}}^{*T}(u)\} \\ &- & \mathcal{E}\{\underline{\mathbf{X}}(u)\}\underline{\mathbf{m}}_{X}^{*T} + \underline{\mathbf{m}}_{X}\underline{\mathbf{m}}_{X}^{*T} \\ &\Rightarrow & \underline{\mathbf{K}}_{X} = \underline{\mathbf{R}}_{X} - \underline{\mathbf{m}}_{X}\underline{\mathbf{m}}_{X}^{*T} \end{split}$$

2.2 Linear transformations - Spectral shaping and factorization

Suppose we are given a random vector $\underline{X}(u)$ and we construct another random vector $\underline{Y}(u)$ through the linear transformation

$$\underline{Y}(u) = \underline{H}\underline{X}(u)
(m,1) = (m,n)x(n,1)$$

The question that we pose is "what is the second-moment description of $\underline{Y}(u)$?" We first look at the mean of $\underline{Y}(u)$

$$\underline{\mathbf{m}}_{Y} = \mathcal{E}\{\underline{Y}(u)\} = \begin{bmatrix} \mathcal{E}\{Y(u,1)\} \\ \vdots \\ \mathcal{E}\{Y(u,m)\} \end{bmatrix} = \begin{bmatrix} h_{11} & \dots & h_{1n} \\ \vdots & & \vdots \\ h_{m1} & \dots & h_{mn} \end{bmatrix} \cdot \begin{bmatrix} \mathcal{E}\{X(u,1)\} \\ \vdots \\ \mathcal{E}\{X(u,n)\} \end{bmatrix}$$

$$\Rightarrow \boxed{\underline{\mathbf{m}}_{Y} = \underline{\mathbf{H}}\underline{\mathbf{m}}_{X}}$$

In the above derivation we claimed that

$$\mathcal{E}\left\{\sum_{i=1}^{n} h_{ji}X(u,i)\right\} \stackrel{?}{=} \sum_{i=1}^{n} h_{ji}\mathcal{E}\left\{X(u,i)\right\}$$

In other words we assumed that expectation and summation can be interchanged but this holds only if $R_X(t,t)$ is finite (i.e. the variance is finite). For the autocorrelation function of Y:

$$\underline{\mathbf{R}}_{Y} = \mathcal{E}\{\underline{\mathbf{Y}}(u)\underline{\mathbf{Y}}^{*T}(u)\}
= \mathcal{E}\{\underline{\mathbf{H}}\underline{\mathbf{X}}(u)(\underline{\mathbf{H}}\underline{\mathbf{X}}(u))^{*T}\}
= \mathcal{E}\{\underline{\mathbf{H}}\underline{\mathbf{X}}(u)\underline{\mathbf{X}}^{*T}(u)H^{*T}\}
\Rightarrow \underline{\mathbf{H}}\underline{\mathbf{R}}_{X}\underline{\mathbf{H}}^{*T} = \underline{\mathbf{R}}_{Y}$$

A useful concept is that a "white" vector, $\underline{\mathbf{W}}(u)$, which is a randon vector with

$$\underline{\mathbf{m}}_{W} = \underline{\mathbf{0}}$$

and

$$\underline{\mathbf{R}}_{W} = \underline{\mathbf{K}}_{W} = \sigma^{2} \underline{\mathbf{I}}$$

$$= \begin{bmatrix}
\sigma^{2} & 0 & 0 & 0 \\
0 & \sigma^{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \sigma^{2}
\end{bmatrix}$$

where σ is a constant and \underline{I} is the identity matrix. This means that all components W_i of \underline{W} are uncorrelated with all others, all have zero mean and variance σ^2 .

There arises the question of spectral shaping: "Given a white vector $\underline{W}(u)$, can we find a linear transformation such that the resultant vector $\underline{X}(u)$ has a given mean \underline{m}_X and a given covariance matrix \underline{K}_X ?" We

F2-1

can answer this question by looking at our previous results. The mean is $\underline{\mathbf{m}}_X = \underline{\mathbf{H}}\underline{\mathbf{m}}_W$ where $\underline{\mathbf{H}}$ is the linear transformation (i.e. matrix) that we are looking for. Since $\underline{\mathbf{m}}_W = \underline{0}$ it follows that $\underline{\mathbf{m}}_X = \underline{0}$. Consequently

$$\begin{array}{rcl}
\underline{\mathbf{R}}_{X} & = & \underline{\mathbf{H}}\underline{\mathbf{R}}_{W}\underline{\mathbf{H}}^{*T} \\
& = & \sigma^{2}\underline{\mathbf{H}}\underline{\mathbf{H}}^{*T}
\end{array}$$

or

$$oxed{\mathbb{R}_X = \sigma^2 oxed{\mathbb{H}} oxed{\mathbb{H}}^{*T}}$$

Therefore spectral shaping is equivalent to the following: Given a correlation matrix \underline{R}_X find an \underline{H} such that $\underline{R}_X = \underline{H}\underline{H}^{*T}$

Note:

 σ^2 can be absorbed in the given \underline{R}_X by creating a "new" given \underline{R}_X . Other names for this problem are "matrix factorization", "square root of a matrix"

Brief review of linear algebra

Definition 2.2.1 A complex (real) matrix \underline{A} is called Hermitian symmetric (symmetric) iff $\underline{A} = \underline{A}^{*T}$