Contents | | | | 2 | |---|---|--|-----------| | L | INT | RODUCTION Review random variables | 2 | | | 1.1 | Review random variables | 2 | | | 1.2 | Random processes - Examples | 5 | | | 1.3 | Correlation and covariance functions | | | | | DESURPTION: | 10 | | 2 | RA | NDOM VECTORS Definition - Correlation and Covariance matrix | 10 | | | 2.1 | Definition - Correlation and Covariance matrix Linear transformations - Spectral shaling and factorization | 11 | | | 2.2 | Linear transformations - Spectral shafing and last | 22 | | | 2.3 | The whitening concept | 24 | | | 2.4 | The Karhunen - Loëve expansion | 25 | | | 2.5 | Binary Hypothesis testing | | | | | | 37 | | 3 | | rimation theory Mean Square Estimation | 37 | | | 3.1 | Mean Square Estimation | 47 | | | 3.2 | | | | | ~~ | NVERGENCE OF SEQUENCES OF RANDOM VARIABLES | 52 | | 4 | | a distribution | | | | 4.1 | hability | 55 | | | 4.2 | 11 / CONTROPTED CO | 57 | | | 4.3 | - 11 an aguara canar | 58 | | | 4.4 | | | | 5 | CONTINUOUS TIME STOCHASTIC PROCESSES | | 62 | | อ | 5.1 | | 62 | | | • | | 66 | | | 5.2 | | 77 | | Ė | ; pi | ROCESSES THROUGH LINEAR SYSTEMS | | | ٠ | , 1.3
5.1 | | | | | 5.1 | 1 1 . iter and nower specifilly | | | | 5.2
5.3 | and Hourier series | | | | 5. _. | - DCD)- for linear systems | . 86 | | | · • • • • • • • • • • • • • • • • • • • | TIMPUT CATE TO THE TIME | | # Chapter 1 # INTRODUCTION ## 1.1 Review random variables Recall the definition of a r.v. X(u) as a mapping from a probability space $(\mathcal{U}, \mathcal{F}, \mathcal{P})$ to the real line, where \mathcal{U} is the space of all possible outcomes of an experiment, \mathcal{F} is the Borel field on that space and \mathcal{P} is the probability measure on \mathcal{F} . F1-1 A random process is a mapping from a probability space to a set of functions. ## 1.2 Random processes - examples We look at random processes (or stochastic processes) where the parameter space $t \in \mathcal{T}$ is discrete: ..., $-2, -1, 0, 1, 2, \ldots$ called a random sequence. F1-1 $X(u_1,t)$ X (u2,t) $X(u_3,t)$ #### Definition 1.2.1 A stochastic process is a collection of random variables #### Examples of stochastic processes 1. Consider the free fall of a particle from some height H. If h(t) is the distance travelled at time t and g is the gravitational constant then ideally $$h(t) = H - \frac{1}{2}gt^2$$ Let T_h be the time it takes the particle to reach the ground or "hit" time. By solving h(t) = 0 we get $$T_h = \sqrt{ rac{2H}{g}}$$ T_h is a random variable (r.v.) and h(u,t) is a random process. It is a function of both $u \in \mathcal{U}$ and $t \in \mathcal{T}$. If we fix the first argument $u = u_0$ then $h(u_0, t)$ is a deterministic function of t, called *sample path* If we fix time $t = t_0$ then $h(u, t_0)$ is a random variable. - 2. The voltage of an FM receiver of a randomly chosen station is a random process. - 3. The prices in the stock market form a random process. Recall the definition of a random variable X(u,t); $u \in \mathcal{U}, t \in \mathcal{T}$. With respect to the choice of the parameter space \mathcal{T} some cases of interest are: 1. for a finite set $\mathcal{T} = [1, 2, ..., n]$ the random process is just a collection of r.v.'s X(u, 1), ..., X(u, n) which is formulated as a random vector $$ar{\mathtt{X}}(u) = \left[egin{array}{c} X_{ar{\ }}(u,1) \ dots \ X(u,n) \end{array} ight]$$ 2. if \mathcal{T} is a finite line segment $$\mathcal{T} = \{t; 0 \leq t \leq T\}$$ then it is like observing a r.p. between time 0 and T. 3. Infinite line $T \equiv R$ F1-2 F 1-3 4. Countable set $$\mathcal{T} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$ in which case we get a random sequence <u>Note:</u> It is not necessary that parameter t signify "time", it could be space. Looking at the range of X(u,t) it can be the real line $\mathcal R$, or the space of complex numbers $\mathcal C$. Recall the definition of a complex r.v.: $$Z(u) \stackrel{\mathrm{def}}{=} X(u) + jY(u)$$ where X(u) and Y(u) are real r.v.'s #### Examples 1. X(u,t)=A(u), a random constant. For each outcome of the experiment we get a constant. 2. Sine wave with random phase $$X(u,t) = sin(2\pi ft + \phi(u))$$ where ϕ is a r.v. that could be uniformly distributed in (0,2 π). Further modelling is achieved by having the amplitude of the sine wave be a r.v. A(u) $$X(u,t) = A(u)sin(2\pi ft + \phi(u))$$ 3. A random walk F1-4 4. We cannot describe the sample paths at all, neither in a mathematical nor visual way. Here we can only give statistical information about the process. The most general kind of stochastic information for a process is obtained by the joint probability distribution function of a number n of samples $X(u,t_1),X(u,t_2),\ldots,X(u,t_n)$ for any n and any set $\{t_1, t_2, \ldots, t_n\}$, defined as $$F_{\hat{X}}(\hat{x},t) \stackrel{\text{def}}{=} Pr\{\hat{X}(\hat{x},t) \leq \hat{x}\}$$ or if this function is differentiable the joint density function $$f_{\widetilde{X}}(x,t) = rac{\vartheta F_{\widetilde{X}}(x,t)}{\vartheta x}$$ > Seement of En ## 1.3.2 Correlation and covariance functions A more advanced description of a random process involves second order statistics such as the joint PDF of two random variables obtained from the process by looking at time t_1 and t_2 $$F(x_1,x_2;t_1,t_2)=Pr\{X(u,t_1)\leq x_1,X(u,t_2)\leq x_2\}$$ If this function F is differentiable then we can define the joint pdf as $$f(x_1,x_2;t_1,t_2)= rac{artheta^2 F}{artheta x_1 artheta x_2}$$ This is typically too demanding so we usually settle for less. Moments are desirable quantities to obtain such as 1. The mean value of X(u,t) $$m_X(t) \stackrel{\mathrm{def}}{=} \mathcal{E}\{X(u,t)\}$$ which is a deterministic function of t #### 2. The correlation function $$R_X(t_1,t_2) \stackrel{\mathrm{def}}{=} \mathcal{E}\{X(u,t_1)X(u,t_2)\}$$ which is again a deterministic function of two arguments t_1 and t_2 . The above ### F1-5 definition for the autocorrelation holds for real X(u,t). If X(u,t) is a complex process then we define $$R_X(t_1,t_2) \stackrel{\mathrm{def}}{=} \mathcal{E}\{X(u,t_1)X^*(u,t_2)\}$$ where * means comlex conjugate ### 3. The covariance function $$K_X(t_1,t_2) \stackrel{\mathrm{def}}{=} \mathcal{E}\{(X(u,t_1)-m_X(t_1))(X(u,t_2)-m_X(t_2))^*\}$$ by expanding we conclude that $$K_X(t_1,t_2) = R_X(t_1,t_2) - m_X(t_1)m_X(t_2)^*$$ Note: If $m_X(t) = 0$ then $K_x = R_x$ The above constitute second-order description of a random process, which very often is all we have or can calculate. In general knowing $m_X(t)$ and $R_X(t_1, t_2)$ says nothing about the underlying statistics which generated them. A notable exception is the Gaussian case that we will see later. ### Examples: 1. $$X(u,t) = A(u)$$ $$\Rightarrow m_X(t) = m_A = \mathcal{E}\{A(u)\}$$ Note: Suppose that $m_A = 0$, ie the ensemble average of X(u,t) is zero. Yet every time we do the experiment, (with probability 1 for continuous rv.'s) we see a constant number $\neq 0$! (for $-\infty < t < \infty$) Here the sample paths have little relation to the statistical averages of the process. Processes for which the sample path behaviour relates to ensemble quantities are called ergodic. (we will discuss them later)