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Chapter 1
INTRODUCTION

1.1 Review random variables

Recall the definition of a r.v. X(u) as a mapping from a probability space (U, F,P)
to the real line , where U is the space of all possible outcomes of an experiment , F
is the Borel field on that space and P is the probability measure on F.
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A random process is a mapping from a probability space to a set of functions.

1.2 Random processes - examples

We look at random processes ( or stochastic processes ) where the parameter space
t € T is discrete : ...,—2,-1,0,1,2,... called a random sequence.
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Definition 1.2.1 A stochastic process is a collection of random variables

Examples of stochastic processes

1.

3.

Consider the free fall of a particle from some height H. If h(t) is the distance
travelled at time ¢ and g is the gravitational constant then ideally

h(t) = H — —;—gtz

Let T be the time it takes the particle to reach the ground or “hit” time. By
solving h(t) = 0 we get
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T}, is a random variable (r.v.) and h(u,?) is a random process. It is a function

of bothueld andt € 7.

If we fix the fir.t argument u = uo then h(uo,t) is a deterministic function of
i, called sample path If we fix time t = ¢, then h(u,?,) is a random variable.

The voltage of an FM receiver of a randomly chosen station is a random
process.

The prices in the stock market form a random process.

Recall the definition of a random variable X (u,t);u € U,t € T. With respect to
the choice of the parameter space 7 some cases of interest are :

1.

for a finite set 7 = [1,2,...,n] the random process is just a collection of r.v.’s
X(u,1),...,X(u,n) which is formulated as a random vector
X\u,1)
X(u) = s
X(u,n)

. if 7 is a finite line segment

T={t;0<t<T}

then it is like observing a r.p. between time 0 and T

. Infinite line 7T =R
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4. Countable set
T = {...,—3,—2,—1,0,1,2,3,...}
in which case we get a random sequence

Note : It is not necessary that parameter ¢ signify “time” , it could be space.
Looking at the range of X (u,t) it can be the real line R , or the space of complex
numbers C. Recall the definition of a comlpex r.v. :

Z(w) ¥ X () + Y (u)
where X(u) and Y(u) are real r.v.’s

Examples

1. X(u,t)= A(u) , a random constant. For each outcome of the experiment we
get a constant.
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2. Sine wave with random phase

X(u,t) = sin(2r ft + ¢(u))
where ¢ is a r.v. that could be uniformly distributed in (0,27 ).
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Further modelling is achieved by having the amplitude of the sine wave be a
r.v. A(u)

X(u,t) = A(u)sin(2m ft + ¢(u)
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3. A random walk
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4. We cannot describe the sample paths at all, neither in a mathematical nor
; visual way. Here we can only give statistical informatipn about the process.
lo> - ETA.}V'sTICﬁ—; DEErIPN S _
El/?he most general kind of stochastic information for\a process is obtained by the
Joint probability distribution function of a number n of samples X (u, t1), X (u,t2), ..., X (u,1

for any n and any set {t1,t2,...,t.}, defined as
e def -~

or if this function is differentiable the joint density function

Y Ex(z,
frit) = ZH20
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1.3.2 Correlation and covariance functions

- A_m*eaé*med—deﬁﬂ%pﬁon—e%—a—fandom-pmcess«involves second order statistics

such as tlﬂe joint PDF of two random variables cbtained from the process by looking

at time /tl and t,
]

[ F(z:, za3t1,t2) = Pr{X(u,t;) < 1, X (u, ) < @5}

!

i
If this function F is differentiable then we can define the joint pdf as

P2 F
f(z1, @23 t1,12) = 92,05,

"~ This is typically too demanding so we usually settle for less. Moments are desirable
quantities to obtain such as

1. The mean value of X (u,t)
mx(t) ¥ E{X(w,0)}

which is a deterministic function of ¢
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9. The correlation function
Rx(t1,t2) & E{X (u, 1) X (u,2)}

which is again a deterministic function of two arguments ¢; and t;. The above
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definition for the autocorrelation holds for real X (u,t). If X (u,t) is a complex
process then we define

Rx(t1,t2) & E{X (u, 1) X *(u,t2)}
where * means comlex conjugate

3. The covariance function
Kx(t1,t2) & E{(X (u,t1) — mx(t:))(X (v, t2) — mx(t2))"}
by expanding we conclude that
Kx(t1,t2) = Rx(t1,t2) — mx (t1)mx(t2)*

Note : If mx(t) =0 then K, = R, The above constitute second-order description
of a random process, which very often is all we have or can calculate.

In general knowing mx(t) and Rx(:,t2) says nothing about the underlying statis-
tics which generated them. A notable exception is the Gaussian case that we will
see later.

Examples :
1. X(u,t) = A(u)

= mx(t) = ma = E{A(u)}
Note : Suppose that m4 = 0, ie the ensemble average of X(u,t) is zero. Yet
every time we do the experiment, ( with probability 1 for continuous rv.’s ) we
see a constant number # 0 ! ( for —co <t < oo ) Here the sample paths have
little relation to the statistical averages of the process. Processes for which
the sample path behaviour relates to ensemble quantities are called ergodic. (
we will discuss them later )




