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L1: PV’s versus RP’s

Random Variable (RV):

Recall the definition of a r.v. X(u): it is a mapping from a 
probability space {U,F,V) to the real line , where U is the space 
of all possible outcomes of an experiment, F is a Borel field on 
that space and V is a probability measure on F.

Random Process (RP): it is a mapping from a probability 
space {U,F,V) to a set of functions
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L1: RP’s versus RS’s versus RVe’s

Conclusion: A stochastic process is a collection of random 
variables X(u,t1), X(u,t2), …, X(u,tn),… 

Note 1: A random process (or stochastic process) where the 
parameter space t T is discrete : ..., -2, -1, 0, 1, 2,... called a 
Random Sequence (RS).

∈

Note 2: If the parameter space is discrete and finite, 
T={1,2,…,N}, we have a Random Vector (RV) of dim (N,1)
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L1: RP example #1

Consider the free fall of a particle from some height H. If h(t) 
is the distance traveled at time t and g is the gravitational 
constant then, ideally, h(t) is the deterministic function of t:

However, with air turbulence,
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L1: RP example #1 (cont.)

Let Th be the time it takes the particle to reach the ground or 
"hit" time. By solving h(t) = 0 we get:

However, in turbulence, Th is a random variable (r.v.) and h(u,t) 
is a random process. It is a function of both u ε U and t ε T.

• When we fix the first argument u = u0 then h(uo,t) is a
deterministic function of t, called sample path.

•When we fix time t = to , then h(u,to) is a random variable.
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L1: Other examples

• The voltage of an FM receiver of a randomly chosen 
station is a random process (explain the “double” 
randomness).

• The stock prices of a company form a random sequence.
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L1: Summary on RP cases

In general, we write  
With respect to the choice of the parameter space T, 
cases of interest are :

1. A finite set T = [1, 2,... ,N]; the random process is just a 
collection of r.v.'s X(u, 1),... ,X(u,N), a random vector:

3. if T is a finite line segment
then we “observe” an RP between time 0 and T.

2. if T is an infinite (countable) series of integers, we have a RS

4. Infinite line T ≡R is the continuous-time “classic” case
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L1: Summary on RP cases (2)

Note: It is not necessary that parameter t signify "time", it 
could be space (“random images”) or anything else. 

As for the range of X{u,t), it can be the real line R , or the 
space of complex numbers C. 

Recall the definition of a complex RV:

where X(u) and Y(u) are real r.v.'s
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L1: Classic cases of RP’s

1. X(u,t)= A(u) , a random constant.  For each outcome of 
the experiment we get a constant.

2.  Sinewave with random phase:

where φ is an RV that could be uniformly distributed in (0,2π )
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L1: Classic cases of RP’s (2)

Further modeling is achieved by having the amplitude of the 
sinewave be an RV A(u) :

3. Random walk:

Manytimes we cannot describe the sample paths at all, neither 
in a mathematical nor a visual way → We can only give 
statistical information about the process
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L1: Statisitcal Description of RP’s

The most general kind of stochastic information for a process 
is obtained by the joint probability distribution function of a 
number n of samples X(u,t1), X(u,t2),… for any n and any set 
{t1,t2,…,tn}

•Marginal PDF of one random variable:
FX(x,t) ≡ Pr{X(u,t) ≤ x}

•Joint PDF of two random variables obtained from the 
process by looking at time t1 and t2:

•In general, this is typically too demanding → Moments
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L1: Moments for real RP’s

Mean value of X(u,t): 
which is a deterministic function of t

Correlation function:
which is again a deterministic function of two arguments 
t1 and t2.
The above definition for the autocorrelation holds for real X(u,t).
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L1: Moments for complex RP’s

If X(u,t) is a complex process then we define:

where * means complex conjugate  

Covariance function:

by expanding we conclude that

Note: If mX(t) = 0 then Kx = Rx. The above constitute second-order description 
of a random process, which very often is all we have or can calculate. 

In general, knowing mX(t) and RX(t1,t2) says nothing about the underlying 
statistics which generated them. A notable exception is the Gaussian case.
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L1: Example of a mean value of a RP

1. X(u,t) = A(u) → mX(t) = mA = Ε{A(u)}

Note : Suppose that mA = 0, i.e. the ensemble average of 
X(u,t) is zero. Yet ,every time we do the experiment, (with 
probability 1 for continuous RV's ) we see a constant number 
≠ 0 ! ( for -∞ < t < ∞ ) 

Here, the sample paths have little relation to the statistical 
averages of the process. Processes for which the sample path 
behavior relates to ensemble quantities are called ergodic.
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L1: Example of the first two moments of a RP (2)

2. Random sinusoid:

Notice that the autocorrelation depends only on the difference 
t1 - t2 and not t1 or t2 individually.
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L1: Correlation-function properties

Properties than any autocorrelation or covariance function 
must satisfy:

(a) Any well defined function mX(t) can be the mean function 
E{X(u,t)} of a process

(b) The correlation function RX(t1,t2) must be Hermitian
symmetric, i.e. 

(c) The correlation function must be a nonnegative definite 
function
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L1: Non-negative Definiteness + Schwartz

Definition: A complex function RX(t1,t2) is called nonnegative 
definite iff for any choice of n complex numbers a1,a2,... ,an
and every n-tuple (t1,t2,…,tn)> it is true that

(d) The correlation function must satisfy the Schwartz 
inequality


