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The increasing need for multimodal terminals that adjust their configuration on the fly in order to meet the required quality of
service (QoS), under various channel/system scenarios, creates the need for flexible architectures that are capable of performing
such actions. The paper focuses on the concept of flexible/reconfigurable radio systems and especially on the elements of flexibility
residing in the PHYsical layer (PHY). It introduces the various ways in which a reconfigurable transceiver can be used to provide
multistandard capabilities, channel adaptivity, and user/service personalization. It describes specific tools developed within two
IST projects aiming at such flexible transceiver architectures. Finally, a specific example of a mode-selection algorithmic architec-
ture is presented which incorporates all the proposed tools and, therefore, illustrates a baseband flexibility mechanism.
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1. INTRODUCTION

The emergence of speech-based mobile communications
in the mid 80s and their exponential growth during the
90s have paved the way for the rapid development of new
wireless standards, capable of delivering much more ad-
vanced services to the customer. These services are and
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will be based on much higher bit rates than those pro-
vided by GSM, GPRS, and UMTS. The new services (video
streaming, video broadcasting, high-speed Internet, etc.)
will demand much higher bit rates/bandwidths and will
have strict QoS requirements, such as the received BER
and the end-to-end delay. The new and emerging stan-
dards (WiFi, WiMax, DVB-T, S-DMB, IEEE 802.20) will
have to compete with the ones based on wired commu-
nications and overcome the barriers posed by the wireless
medium to provide seamless coverage and uninterrupted
communication.
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Another issue that is emerging pertains to the equipment
that will be required to handle the plethora of the new stan-
dards. It will be highly unlikely that the user will have avail-
able a separate terminal for each of the introduced standards.
There will be the case that the use of a specific standard will
be dictated by factors such as the user location (inside build-
ings, in a busy district, or in a suburb), the user speed (pedes-
trian, driving, in a high-speed train), and the required quality
(delay sensitivity, frame error rate, etc.). There might also be
cases in which it would be preferred that a service was de-
livered using a number of different standards (e.g., WiFi for
video, UMTS for voice), based on some criteria related to the
terminal capabilities (say, power consumption) and the net-
work capacity constraints. Therefore, the user equipment has
to follow the rapid development of new wireless standards by
providing enough flexibility and agility to be easily upgrade-
able (with perhaps the modification/addition of specific soft-
ware code but no other intervention in hardware).

We note that flexibility in the terminal concerns both the
analog/front-end (RF/IF) as well as digital (baseband) parts.
The paper will focus on the issues pertaining to the base-
band flexibility and will discuss its interactions with the pro-
cedures taking place in the upper layers.

2. DEFINITIONS OF RADIO FLEXIBILITY

The notion of flexibility in a radio context may be defined
as an umbrella concept, encompassing a set of nonoverlap-
ping (in a conceptual sense) postulates or properties (each of
which must be defined individually and clearly for the overall
definition to be complete) such as adaptivity, reconfigurabil-
ity, modularity, scalability, and so on. The presence of any
subset of such features would suffice to attribute the quali-
fying term flexible to any particular radio system [1]. These
features are termed “nonoverlapping” in the sense that the
occurrence of any particular one does not predicate or force
the occurrence of any other. For example, an adaptive sys-
tem may or may not be reconfigurable, and so on. Additional
concepts can be also added, such as “ease of use” or “seam-
lessly operating from the user’s standpoint,” as long as these
attributes can be quantified and identified in a straightfor-
ward way, adding a new and independent dimension of flex-
ibility. Reconfigurability, for instance, which is a popular di-
mension of flexibility, can be defined as the ability to rear-
range various modules at a structural or architectural level
by means of a nonquantifiable1 change in its configuration.
Adaptivity, on the other hand, can be defined as the radio sys-
tem response to changes by properly altering the numerical
value of a set of parameters [2, 3]. Thus, adaptive transmitted
(Tx) power or adaptive bit loading in OFDM naturally fall in
the latter category, whereas dynamically switching between,
say, a turbo-coded and a convolutional-coded system in re-
sponse to some stimulus (or information) seems to fit better
the code-reconfigurability label, simply because that type of

1“Nonquantifiable” here means that it cannot be represented by a nu-
merical change in a parametric set.

change implies a circuit-design change, not just a numeric
parameter change. Furthermore, the collection of adaptive
and reconfigurable transmitted-signal changes in response to
some channel-state-information feedback may be termed dy-
namic signal design (DSD). Clearly, certain potential changes
may fall in a grey area between definitions.2

A primitive example of flexibility is the multiband oper-
ation of current mobile terminals, although this kind of flex-
ibility driven by the operator is not of great research interest
from the physical-layer point of view. A more sophisticated
version of such a flexible transceiver would be the one that
has the intelligence to autonomously identify the incumbent
system configuration and also has the further ability to ad-
just its circumstances and select its appropriate mode of op-
eration accordingly. Software radio, for example, is meant to
exploit reconfigurability and modularity to achieve flexibil-
ity. Other approaches may encompass other dimensions of
flexibility, such as adaptivity in radio resource management
techniques.

3. FLEXIBILITY SCENARIOS

In response to the demand for increasingly flexible radio
systems from industry (operators, service providers, equip-
ment manufacturers, chip manufacturers, system integra-
tors, etc.), government (military communication and signal-
intelligence systems), as well as various user demands, the
field has grown rapidly over the last twenty years or so (per-
haps more in certain quarters), and has intrigued and acti-
vated R&D Departments, academia, research centers, as well
as funding agencies. It is now a rapidly growing field of in-
quiry, development, prototyping, and even fielding. Because
of the enormity of the subject matter, it is hard to draw solid
boundaries that exclusively envelop the scientific topic, but
it is clear that such terms as SR, SDR, reconfigurable radio,
cognitive/intelligent/smart radio, and so on are at the cen-
ter of this activity. Similar arguments would include work
on flexible air-interface waveforms and/or generalized (and
properly parameterized) descriptions and receptions thereof.
Furthermore, an upward look (from the physical-layer “bot-
tom” of the communication-model pyramid) reveals an ever-
expanding role of research on networks that include recon-
figurable topologies, flexible medium-access mechanisms,
interlayer optimization issues, agile spectrum allocation [4],
and so on. In a sense, ad hoc radio networks fit the concept,
as they do not require any rigid or fixed infrastructure. Simi-
larly, looking “down” at the platform/circuit level [5], we see
intense activity on flexible and malleable platforms and de-
signs that are best suited for accommodating such flexibility.
In other words, every component of the telecommunication

2This terminology is to a certain degree arbitrary and not universally
agreed upon; for instance, some authors call a radio system “reconfigurable”
because “it is adaptive,” meaning that it adapts to external changes. On
the other hand, the term “adaptive” has a clear meaning in the signal-
processing-algorithms literature (e.g., an adaptive equalizer is the one whose
coefficient values change slowly as a function of the observation), and the
definition proposed here conforms to that understanding.
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and radio universe can be seen as currently participating in
the radio-flexibility R&D work, making the field exciting as
well as difficult to describe completely.

Among the many factors that seem to motivate the
field, the most obvious seems to be the need for multistan-
dard, multimode operation, in view of the extreme pro-
liferation of different, mutually incompatible radio stan-
dards around the globe (witness the “analog-to-digital-to-
wideband-to-multicarrier” evolution of air interfaces in the
various cellular-system generations). The obvious desire for
having a single-end device handling this multitude in a com-
patible way is then at the root of the push for flexibility. This
would incorporate the desire for “legacy-proof” functional-
ity, that is, the ability to handle existing systems in a single
unified terminal (or single infrastructure access point), re-
gardless of whether this radio system is equipped with all the
related information prestored in memory or whether this is
software-downloaded to a generically architected terminal;
see [6] for details. In a similar manner, “future-proof” sys-
tems would employ flexibility in order to accommodate yet-
unknown systems and standards with a relative ease (say, by a
mere resetting of the values of a known set of parameters), al-
though this is obviously a harder goal to achieve that legacy-
proofness. Similarly, economies of scale dictate that radio
transceivers employ reusable modules to the degree possible
(hence the modularity feature). Of course, truly optimized
designs for specific needs and circumstances, lead to “point
solutions,” so that flexibility of the modular and/or generic
waveform-design sort may imply some performance loss. In
other words, the benefit of flexibility may come at some cost,
but hopefully the tradeoff is still favorable to flexible designs.

There are many possible ways to exploit the wide use of a
single flexible reconfigurable baseband transceiver, either on
the user side or on the network side. One scenario could be
the idea of location-based reconfiguration for either multi-
service ability or seamless roaming. A flexible user terminal
can be capable of reconfiguring itself to whichever standard
prevails (if there are more than one that can be received) or
exists (if it is the only one) at each point in space and time,
either to be able to receive the ever-available (but possibly
different) service or to receive seamlessly the same service.
Additionally, the network side can make use of the future-
proof reconfiguration capabilities of its flexible base stations
for “soft” infrastructure upgrading. Each base station can be
easily upgradeable to each current and future standard. An-
other interesting scenario involves the combined reception
of the same service via more than one standard in the same
terminal. This can be envisaged either in terms of “standard
selection diversity,” according to which a flexible terminal
will be able to download the same service via different air-
interface standards and always sequentially (in time) select
the optimum signal (to be processed through the same flex-
ible baseband chain) or, in terms of service segmentation
and standard multiplexing, meaning that a flexible termi-
nal will be able to collect frames belonging to the same ser-
vice via different standards, thus achieving throughput maxi-
mization for that service, or receive different services (via dif-
ferent standards) simultaneously. Finally, another flexibility

scenario could involve the case of peer-to-peer communica-
tion whereby two flexible terminals could have the advan-
tage of reconfiguring to a specific PHY (according to condi-
tions, optimization criteria) and establish a peer-to-peer ad
hoc connection.

The aforementioned scenarios of flexibility point to the
fact that the elements of wireless communications equip-
ment (on board both future terminals and base station sites)
will have to fulfill much more complicated requirements than
the current ones, both in terms of multistandard capabilities
as well as in terms of intelligence features to control those
capabilities. For example, a flexible terminal on either of the
aforementioned scenarios must be able to sense its environ-
ment and location and then alter its transmission and recep-
tion parameters (frequency band, power, frequency, modula-
tion, and other parameters) so as to dynamically adapt to the
chosen standard/mode. This could in theory allow a multidi-
mensional reuse of spectrum in space, frequency, and time,
overcoming the various spectrum usage limitations that have
slowed broadband wireless development and thus lead to one
vision of cognitive radio [7], according to which radio nodes
become radio-domain-aware intelligent agents that define
optimum ways to provide the required QoS to the user.

It is obvious that the advantageous operation of a truly
flexible baseband/RF/IF platform will eventually include the
use of sophisticated MAC and RRM functionalities. These
will have to regulate the admission of new users in the system,
the allocation of a mode/standard to each, the conditions of
a vertical handover (from one standard to another), and the
scheduling mechanisms for packet-based services. The cri-
teria for assigning resources from a specific mode to a user
will depend on various parameters related to the wireless
channel (path loss, shadowing, fast fading) and to the spe-
cific requirements imposed by the terminal capabilities (min-
imization of power consumption and transmitted power),
the generated interference, the user mobility, and the service
requirements. That cross-layer interaction will lead to the ul-
timate goal of increasing the multiuser capacity and coverage
while the power requirements of all flexible terminals will be
kept to a minimum required level.

4. FLEXIBLE TRANSCEIVER ARCHITECTURE
AT THE PHY-DYNAMIC SIGNAL DESIGN

4.1. Transmission schemes and techniques

Research exploration of the next generation of wireless sys-
tems involves the further development of technologies like
OFDM, CDMA, MC-CDMA, and others, along with the use
of multiple antennas at the transmitter and the receiver. Each
of these techniques has its special benefits in a specific envi-
ronment: for example, OFDM is used successfully in WLAN
systems (IEEE 802.11a), whereas CDMA is used successfully
in cellular 2G (IS-95) and 3G (UMTS) systems. The selection
of a particular one relies on the operational environment of
each particular system. In OFDM, the available signal band-
width is split into a large number of subcarriers, orthog-
onal to each other, allowing spectral overlapping without
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Figure 1: MIMO code design procedure.

interference. The transmission is divided into parallel sub-
channels whose bandwidth is narrow enough to make them
effectively frequency flat. A cyclic prefix is used to combat ISI,
in order to avoid (or simplify) the equalizer [8].

The combination of OFDM and CDMA, known as
MC-CDMA [9], has gained attention as a powerful trans-
mission technique. The two most frequently investigated
types are multicarrier CDMA (MC-CDMA) which employs
frequency-domain spreading and multicarrier DS-CDMA
(MC-DS-CDMA) which uses time-domain spreading of the
individual subcarrier signals [9, 10]. As discussed in [9],
MC-CDMA using DS spread subcarrier signals can be fur-
ther divided into multitone DS-CDMA, orthogonal MC-DS-
CDMA, and MC-DS-CDMA using no subcarrier overlap-
ping. In [11, 12], it is shown that the above three types of
MC-DS-CDMA schemes with appropriate frequency spacing
between two adjacent subcarriers can be unified in the family
of generalized MC-DS-CDMA schemes.

Multiple antennas with transmit and receive diversity
techniques have been introduced to improve communication
reliability via the diversity gain [13]. Coding gain can also
be achieved by appropriately designing the transmitted sig-
nals, resulting in the introduction of space-time codes (STC).
Combined schemes have already been proposed in the lit-
erature. MIMO-OFDM has gained a lot of attention in re-
cent years and intensive research has already been performed.
Generalized MC-DS-CDMA with both time- and frequency-
domain spreading is proposed in [11, 12] and efforts on
MIMO MC-CDMA can be found in [14, 15, 16, 17, 18].

4.2. Dynamic signal design

Flexible systems do not just incorporate all possible point so-
lutions for delivering high QoS under various scenarios, but
possess the ability to make changes not only on the algorith-
mic but also on the structural level in order to meet their
goals. Thus, the DSD goal is to bring the classic design proce-
dure of the PHY layer into the intelligence of the transceiver
and initiate new system architectural approaches, capable of
creating the tools for on-the-fly reconfiguration. The mod-
ule responsible for all optimization actions is herein called
supervisor, also known as controller and the like.

The difference between adaptive modulation and cod-
ing (AMC) and dynamic signal design (DSD) is that AMC
is a design approach with a main focus on developing algo-
rithms for numerical parameter changes (constellation size,
Tx power, coding parameters), based on appropriate feed-
back information, in order to approach the capacity of the
underlying channel. The type of channel code in AMC is pre-
determined for various reasons, such as known performance
of a given code in a given channel, compatibility with a given
protocol, fixed system complexity, and so on. Due to the va-
riety of channel models, system architectures, and standards,
there is a large number of AMC point solutions that will suc-
ceed in the aforementioned capacity goal.

In a typical communication system design, the algorith-
mic choice of most important functional blocks of the PHY
layer is made once at design time, based on a predetermined
and restricted set of channel/system scenarios. For example,
the channel waveform is selected based on the channel (fast
fading, frequency selective) and the system characteristics
(multi/single-user, MIMO). On the other hand, truly flexi-
ble transceivers should not be restricted to one specific sce-
nario of operation, so that the choice of channel waveform,
for instance, must be broad enough to adapt either para-
metrically or structurally to different channel/system condi-
tions. One good example of such a flexible waveform would
be fully parametric MC-CDMA, which can adjust its spread-
ing factor, the number of subcarriers, the constellation size,
and so on. Similarly, MIMO systems that are able to change
the number of active antennas or the STC, on top of a flexi-
ble modulation method like MC-CDMA, can provide a large
number of degrees of freedom to code designers.

With respect to the latter point, we note that STC de-
sign has relied heavily on the pioneering work of Tarokh
et al. in [19], where design principles were first established.
Recent overall code design approaches divide coding into
inner and outer parts (see Figure 1), in order to produce
easily implementable solutions [20, 21]. Inner codes are
the so-called ST codes, whereas outer codes are the clas-
sic SISO channel codes. Each entity tries to exploit a dif-
ferent aspect of channel properties in order to improve the
overall system performance. Inner codes usually try to get
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Table 1: Flexible design tools and inputs.

Physical-layer
flexibility

Modulation (a flexible
scheme like MC-CDMA)

Space-time coding Channel coding

Tools

Adjustable FFT size,
spreading code length,
constellation size (bit
loading), Tx power per
carrier (power loading)

Adjustable number of Tx/Rx
antennas used, flexible ST
coding scheme as opposed to
(diversity/multiplexing/coding/SNR
gain)

Flexible FEC codes (e.g.,
turbo, convolutional, LDPC)
with adjustable coding rate,
block size,
code polynomial

Inputs

Number of users
sharing the same BW,
channel type
(indoor/outdoor)

Channel variation in time
(Doppler), Rx antenna
correlation factor, feedback
dealy, goodness of channel
estimation

Effective channel
parameters (including
STC effects)

diversity/multiplexing/SNR gain, while outer codes try to
get diversity/coding gain. The best choice of an inner/outer
code pair relies on channel characteristics, complexity, and
feedback-requirement (CSI) considerations.

There are several forms of diversity that a system can of-
fer, such as time, frequency, and space. The ability to change
the number of antennas, subcarriers, spreading factor and
the ST code provides great control for the purpose of reach-
ing the diversity offered by the current working environment.
There are many STCs presented in the literature which ex-
ploit one form of diversity in a given system/environment.
All these point solutions must be taken into account in order
to design a system architecture that efficiently incorporates
most of them.

Outer channel codes must also be chosen so as to ob-
tain the best possible overall system performance. In some
cases, the diversity gain of the cascade coding can be analyti-
cally derived, based on the properties of both coding options
[20]. Even in these idealized scenarios, however, individually
maximizing the diversity gain of both codes does not im-
prove performance. This means that, in order to maximize
the overall performance of the system, a careful tradeoff is
necessary between multiplexing gain, coding gain, and SNR
gain.

New channel estimation methods must also be developed
in order to estimate not only the channel gain values but also
other related inputs (see Table 1). For example, the types of
diversity that can be exploited by the receiver or the corre-
lation factor between multiple antennas are important in-
puts for choosing the best coding option. Another input is
the channel rate of change (Doppler), normalized to the sys-
tem bandwidth, in order to evaluate the feedback delay. In
most current AMC techniques, this kind of input informa-
tion has not been employed, since the channel characteristics
have not been considered as system design variables.

5. FLEXIBILITY TOOLS

The paper is based on techniques developed in two IST
projects, WIND-FLEX and Stingray. The main goal of
WIND-FLEX was the development of flexible (in the

sense of Section 2) architectures for indoor, high-bit-rate
wireless modems. OFDM was the signal modulation of
choice [22], along with a powerful turbo-coded scheme.
The Stingray Project targeted a Hiperman-compatible [23]
MIMO-OFDM system for Fixed Wireless Access (FWA) ap-
plications. It relied on a flexible architecture that exploited
the channel state information (CSI) provided by a feedback
channel from the receiver to the transmitter, driven by the
needs of the supported service.

In the following sections, the key algorithmic choices
of both projects are presented, which can be incorporated
in a single design able to operate in a variety of environ-
ments and system configurations. Since a flexible transceiver
must operate under starkly different channel scenarios, the
transmission-mode-selection algorithm must rely solely on
instantaneous channel measurements and not on the aver-
age behavior of a specific channel model. This imposes the
restriction of low channel dynamics in order to have the ben-
efit of feedback information. On both designs, a maximum
of one bit per carrier is allowed for feedback information,
along with the mode selection number. The simplicity of this
feedback information makes both designs robust to channel
estimation errors or feedback delay.

5.1. AMC in WIND-FLEX

The WIND-FLEX (WF) system was placed in the 17 GHz
band, and has been measured to experience high frequency
selectivity within the 50 MHz channel widths. The result
is strong performance degradation due to few subcarri-
ers experiencing deep spectral nulls. Even with a power-
ful coding scheme such as turbo codes, performance degra-
dation is unacceptable. The channel is fairly static for a
large number of OFDM symbols, allowing for efficient de-
sign of adaptive modulation algorithms in order to deal
with this performance degradation. In order to keep imple-
mentation complexity at a minimum, and also to minimize
the required channel feedback traffic, two design constraints
have been adopted: same constellation size for all subcarri-
ers, as well as same power for all within an OFDM sym-
bol, although both these parameters are adjustable (adap-
tive).
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Figure 2: Simplified block diagram of algorithm 1.

Two algorithms have been proposed in order to optimize
the performance. The first algorithm (Figure 2) evaluates the
required Tx power for a specific code, constellation, and
channel realization to achieve the target BER. If the required
power is greater than the maximum available/allowable Tx
power, a renegotiation of the target QoS (lowering the re-
quirements) takes place. This approach exhibits low com-
plexity and limited feedback information requirements. The
relationship of the uncoded versus the coded BER perfor-
mance in an OFDM system have been given in [24] for turbo
codes and can be easily extended to convolutional codes. An
implementation of this algorithm is described in [25].

The large SNR variation across the subcarriers of OFDM
degrades system performance even when a strong outer code
is used. To counter, the technique of Weak Subcarrier ex-
cision (WSCE) is introduced as a way to exclude a certain
number of subcarriers from transmission. The second pro-
posed algorithm employs WSCE along with the appropriate
selection of code/constellation size. This is called the “coded
weak subcarrier excision” (CWSCE) method.

In WIND-FLEX channel scenarios performance im-
proved when using a fixed number of excised subcarriers.
The bandwidth penalty introduced by this method was com-
pensated by the ability to use higher code rates. In Figure 3,
bit error rate (BER) simulation curves are shown for the un-
coded performance of fixed WSCE and are compared with
the bit loading algorithm presented in [26] for the NLOS
channel scenario. {Rate 1} and {Rate 2} are the system
throughputs when using 4-QAM with 10% and 20% WSCE,
respectively. The BER performance without bit loading or
WSCE is also plotted for a 4-QAM constellation.

There is a clear improvement by just using a fixed WSCE
scheme, and there is a marginal loss in comparison to the
nearly optimum bit-loading algorithm. Based on the average
SNR across the subcarriers, semianalytic computation of the
average and outage capacity for the effective channel is possi-
ble in order to evaluate a performance upper bound of a sys-
tem employing such WSCE plus uniform power loading. The
use of an outer code helps to come close to this bound. We
note that the average capacity of an OFDM system without
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SNR/bit

4-QAM without bit loading
Bit-loading rate-2 case
WSCE (10%) rate-1 case

Bit-loading rate-1 case
WSCE (20%) rate-2 case

Figure 3: Uncoded performance for WIND-FLEX NLOS channel.

power-loading techniques is

CE = E

 1
N

N∑
k=1

log2

(
1 + SNRk

) bits/carrier, (1)

where the expectation operator is over the stochastic chan-
nel. For a system employing WSCE, the summation is over
the used carriers along with appropriate transmit energy nor-
malization. These capacity results are based on the “qua-
sistatic” assumption. For each burst, it is also assumed that
a sufficiently large number of bits are transmitted, so that
the standard infinite time horizon of information theory is
meaningful. In Figure 4, the system average capacity (SAC)
and the 1% system outage capacity (SOC) of the WF system
employing various WSCE scenarios are presented. Here, the
definitions are as follows.

(i) SAC (system average capacity). This is equivalent to
the mean or ergodic capacity [27] applied to the ef-
fective channel. It serves as an upper bound of systems
with boundless complexity or latency that use a spe-
cific inner code.

(ii) SOC (system outage capacity). This is the 1% outage
capacity of the STC-effective channel.

(iii) AC and OC. This is the average capacity and outage
capacity of the actual sample-path channel.

The capacity of an AWGN channel is also plotted as
an upper bound for a given SNR. At low SNR regions, the
capacity of a system employing as high as 30% WSCE is
higher than a system using all carriers without power load-
ing. At high SNR, the capacity loss asymptotically approaches
the bandwidth percentage loss of WSCE. The capacity using
adaptive WSCE is also plotted. In some channel realizations,
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in the low-to-medium SNR region, a 30% to 50% WSCE is
needed. This result motivates the design of the second algo-
rithm. The impact of CWSCE is the ability to choose between
different code rates for the same target rate, a feature absent
from the first algorithm. Assume an ordering of the different
pairs {code rate-constellation size} based on the SNR neces-
sary to achieve a certain BER performance. It is obvious that
this ordering also applies to the throughput of each pair (a
system will not include pairs that need more power to pro-
vide lower throughput). For each of these pairs, the fixed per-
centage of excised carriers is computed so that they all pro-
vide the same final (target) throughput.

The block diagram of CWSCE algorithm is given in
Figure 5. The respective definitions are as follows:

(i) xi, i = 1, . . . ,l, is one of the system-supported constel-
lations;

(ii) yi, i = 1, . . . ,M, is one of the supported outer chan-
nel codes. These can be totally different codes like
turbo, convolutional, LDPC, or the codes resulting
from puncturing one mother code, or both;

(iii) zi, i = 1, . . . ,n, are the resulting WSCE percentages for
the n competitive triplets;

(iv) Pos(zi) are the positions of the zi% of weakest gains.
(v) H is the vector of the estimated channel gains in the

frequency domain;

(vi) N̂0 is the estimated power spectral density of the noise.
(vii) RUBi, i = 1, . . . ,n, is the required uncoded BER for

constellation xi and code yi;
(viii) PTxi, i = 1, . . . ,n, is the required Tx power for the ith

triplet.

The algorithm calculates the triplet that needs the min-
imum Tx power for a given target BER. If the mini-
mum required power is greater than the maximum avail-
able/allowable Tx power, it renegotiates the QoS. Transmit-
power adaptation is usually avoided, although it can be han-
dled with the same algorithm. The triplet selection will still
be the one that needs the minimum Tx power. The extra
computation load is mainly due to the channel-tap sorting.
Proper exploitation of the channel correlation in frequency
(coherence bandwidth) can reduce this complexity overhead.
Instead of sorting all the channel taps, one can sort groups
of highly correlated taps. These groups can be restricted to
have an equal number of taps. There are many sorting algo-
rithms in the literature with different performance-versus-
complexity characteristics that can be employed, depending
on implementation limitations.

Simulation results using algorithm 1 for adaptive
transmission-power minimization are presented in Figure 6.
The performance gain of the proposed algorithm is shown
for 4-QAM, the code rates 1/2 and 2/3. Performance is plot-
ted for no adaptation, as well as for algorithm 1 in an NLOS
scenario. The performance over a flat (AWGN) channel is
also shown for comparison reasons, since it represents the
coded performance limit (given that these codes are designed
to work for AWGN channels). The main simulation system
parameters are based on the WIND-FLEX platform. It uses a
parallel-concatenated turbo code with variable rate via three
puncture patterns (1/2, 2/3, 3/4) [28]. The recursive system-
atic code polynomial used is (13, 15)oct. Perfect channel esti-
mation and zero phase noise are also assumed.

In addition to the transmission power gain, the adaptive
schemes practically guarantee the desired QoS for every chan-
nel realization. Note that in the absence of adaptation, users
experiencing “bad” channel conditions will never get the re-
quested QoS, whereas users with a “good” channel would
correspondingly end up spending too much power versus
what would be needed for the requested QoS. By adopting
these algorithms, one computes (for every channel realiza-
tion) the exact needed power for the requested QoS, and thus
can either transmit with minimum power or negotiate for a
lower QoS when channel conditions do not allow transmis-
sion. An average 2 dB additional gain is achieved by using the
second algorithm versus the first one.

5.2. Adaptive STC in Stingray

As mentioned, Stingray is a Hiperman-compatible 2 ×
2 MIMO-OFDM adaptive system. The adjustment rate,
namely, the rate at which the system is allowed to change the
Tx parameters, is chosen to be once per frame (one frame =
178 OFDM symbols) and the adjustable sets of the Tx pa-
rameters are

(1) the selected Tx antenna per subcarrier, called trans-
mission selection diversity (TSD),

(2) the {outer code rate, QAM size} set.

The antenna selection rule in TSD is to choose, for ev-
ery carrier k, to transmit from the Tx antenna T(k) with the
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Figure 5: Simplified block diagram of algorithm 2.
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Figure 6: Simulation results using algorithm 1: max-log map, 4 it-
erations, NLOS, 4-QAM, rate = 1/2 and 2/3.

best performance from a maximum-ratio combining (MRC)
perspective. For the second set of parameters, the optimiza-
tion procedure is to choose the set that maximizes the system
throughput (bit rate), given a QoS constraint (BER).

In order to identify performance bounds, TSD is com-
pared with two other rate-1 STC techniques, beamforming
and Alamouti. Beamforming is the optimal solution [29] for
energy allocation in an NT×1 system with perfect channel
knowledge at the transmitter side, whereby the same symbol
is transmitted from both antennas multiplied by an appro-
priate weight factor in order to get the maximum achiev-
able gain for each subcarrier. Alamouti’s STBC is a blind
technique [30], where for each OFDM symbol period two
OFDM signals are simultaneously transmitted from the two
antennas.

Each of the three STC schemes can be treated as an ordi-
nary OFDM SISO system producing (ideally) N independent
Gaussian channels [31]. This is the effective SISO-OFDM
channel. For the Stingray system (2 × 2), the corresponding
effective SNR (ESNR) per carrier is as follows:

For TSD, ESNRk =
(∣∣HT(k),0

k

∣∣2
+
∣∣HT(k),1

k

∣∣2)
Es

N0
, (2)

for Alamouti, ESNRk

=
(∣∣H0,0

k

∣∣2
+
∣∣H0,1

k

∣∣2
+
∣∣H1,0

k

∣∣2
+
∣∣H1,1

k

∣∣2)
Es

2N0
, (3)

for beamforming, ESNRk = λmax
k Es
N0

, (4)

where λmax
k is the square of the maximum eigenvalue of the

2 × 2 channel matrix

[
H00

k H10
k

H01
k H11

k

]
, H

i, j
k is the frequency re-

sponse of the channel between the Tx antenna i and Rx an-
tenna j at subcarrier k = 0, 1, . . . ,N − 1, and N0 is the one-
sided power spectral density of the noise in each subcarrier.

In Figure 7, BER simulation curves are presented for all
inner code schemes and 4-QAM constellation. Both perfect
and estimated CSI scenarios are presented. The channel es-
timation procedure uses the preamble structure described in
[32].

For all simulations, path delays and the power of chan-
nel taps have been selected according to the SUI-4 model
for intermediate environment conditions [33]. The average
channel SNR is employed in order to compare adaptive sys-
tems that utilize CSI. Note that this average channel SNR is
independent of the employed STC. Having normalized each
Tx-Rx path to unit average energy, the channel SNR is equal
to one over the power of the noise component of any one of
the receivers. Alamouti is the most sensitive scheme to esti-
mation errors. This is expected, since the errors in all four
channel taps are involved in the decoding procedure. Based
on the ESNR, a semianalytic computation of the average and
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Figure 7: STCs BER performance for perfect/estimated CSI
(PCSI/ECSI) and 4-QAM constellation.

outage capacity for the effective channel is possible in order
to evaluate a performance upper bound of these inner codes.

In Figure 8, the average capacity and the 1% outage ca-
pacity of the three competing systems are presented. For
comparison reasons, the average and outage capacity of the
2 × 2 and 1 × 1 systems with no channel knowledge at the
transmitter and perfect knowledge at the receiver are also
presented. It is clear that all three systems have the same slope
of capacity versus SNR. This is expected, since the rate of all
three systems is one. A system exploiting all the multiplexing
gain offered by the 2 × 2 channel may be expected to have a
slope similar to the capacity of the real channel (AC, OC). It
is also evident that the cost of not targeting full multiplexing
is a throughput loss compared to that achievable by MIMO
channels. On the other hand, the goal of high throughput in-
curs the price of either enhanced feedback requirements or
higher complexity. Comparing the three candidate schemes,
we conclude that beamforming is a high-complexity solution
with considerable feedback requirements, whereas Alamouti
has low complexity with no feedback requirement. TSD has
lower complexity than Alamouti, whereas in comparison
with beamforming, it has a minimal feedback requirement.
The gain over Alamouti is approximately 1.2 dB, while the
loss compared to beamforming is another 1.2 dB.

For all schemes, frequency selectivity across the OFDM
tones is limited due to the MIMO diversity gain. That is
one of the main reasons why bit loading and WSCE gave
marginal performance gain. The metric for selecting the sec-
ond set of parameters was the effective average SNR at the
receiver (meaning the average SNR at the demodulator af-
ter the ST decoding). The system performance simulation
curves based on the SNR at the demodulator (Figure 9) were
the basis for the construction of the Tx mode table (TMT),
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Figure 8: System average capacity and system 1% outage capacity
of different STC options.
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Figure 9: TSD-turbo system performance results.

which consists of SNR regions and code-rate/constellation
size sets for all the QoS operation modes (BER) that will be
supported by the system. The selected inner code is TSD and
the outer code is the same used in the WF system. Since per-
fect channel and noise-power knowledge are assumed, ESNR
is in fact the real prevailing SNR. This turns out to be a
good performance metric, since the outer (turbo) code per-
formance is very close to that achieved on an AWGN channel
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Table 2: Transmission mode table in the case of perfect channel
SNR estimation.

Thr/put
BER

4-QAM
1/2

4-QAM
2/3

4-QAM
3/4

16-QAM
1/2

10−3 > 3.6 > 5.6 > 6.6 > 8.6

10−4 > 4.2 > 6.4 > 7.6 > 9.2

10−5 > 4.7 > 7 > 8.4 > 9.8

10−6 > 5 > 7.6 > 8.9 > 10.7

Thr/put
BER

16-QAM
2/3

16-QAM
3/4

64-QAM
2/3

64-QAM
3/4

10−3 > 11 > 12.2 > 15.9 > 17.3

10−4 > 11.7 > 12.9 > 16.5 > 17.9

10−5 > 12.3 > 13.6 > 16.9 > 18.6

10−6 > 13.1 > 14.5 > 17.5 > 19.8

with equivalent SNR. Ideally, an estimation process should
be included for assessing system performance as a function
of the actual measured channel, which would then be the in-
put to the optimization. Using this procedure in Stingray, the
related SNR fluctuation resulted in marginal performance
degradation.

Based on those curves, and assuming perfect channel-
SNR estimation at the receiver, the derived TMT is presented
in Table 2.

By use of this table, the average system throughput (ST)
for various BER requirements is presented in Figure 10. The
system outage capacity (1%) is a good measure of through-
put evaluation of the system and is also plotted in the same
figure. The average capacity is also plotted, in order to show
the difference from the performance upper bound.

The system throughput is very close to the 1% outage ca-
pacity, but it is 5 to 7 dB away from the performance limit,
depending on the BER level. Since the system is adaptive,
probably the 1% outage is not a suitable performance tar-
get for this system. The SNR gain achieved by going from
one BER level to the next is about 0.8 dB. This marginal gain
is expected due to the performance behavior of turbo codes
(very steep performance curves at BER regions of interest).

5.3. Flexible algorithms for phase noise and residual
frequency offset estimation

Omnipresent nuisances such as phase noise (PHN) and
residual frequency offsets (RFO), which are the result of a
nonideal synchronization process, compromise the orthogo-
nality between the subcarriers of the OFDM systems (both
SISO and MIMO). The resulting effect is a Common Er-
ror (CE) for all the subcarriers of the same OFDM sym-
bol plus ICI. Typical systems adopt CE compensation algo-
rithms, while the ICI is treated as an additive, Gaussian, un-
correlated per subcarrier noise parameter [34]. The phase-
impairment-correction schemes developed in Stingray and
WF can be implemented either by the use of pilot symbols or
by decision-directed methods. They are transparent to the se-
lection of the Space-Time coding scheme, and they are easily
adaptable to any number of Tx/Rx antennas, down to the
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Figure 10: TSD-turbo system throughput (perfect CSI-SNR esti-
mation).

1 × 1 (SISO) case. In [35, 36] it is shown that the quality
of the CE estimate, which is typically characterized by the
Variance of the estimation error (VEE), affects drastically
the performance of the ST-OFDM schemes. In [34, 35, 36]
it is shown that the VEE is a function of the number and
the position of the subcarriers used for estimation purposes,
of the corresponding channel taps and of the pilot modu-
lation method (when pilot-assisted modulation methods are
adopted). Figure 11 depicts the dependence of the symbol er-
ror rate of an Alamouti STC OFDM system with tentative de-
cisions on the number of subcarriers assigned for estimation
purposes. It is clear that this system is very sensitive to the
estimation error, and therefore to the selection of the corre-
sponding “pilot” number.

Additionally, the working range of the decision-directed
approaches is mainly dictated by the mean CE and the SNR,
which should be such that most of the received symbols are
within the bounds of correct decisions (i.e., the resulting er-
ror from the tentative decisions should be really small). This
may be difficult to ensure, especially when transmitting high-
order QAM constellations. An improved supervisor has to
take into account the effect of the residual CE error on the
overall system performance for selecting the optimal triplet,
by inserting its effect into the overall calculations.

Two approaches can be followed for the system optimiza-
tion. When the system protocol forces a fixed number of pilot
symbols loaded on fixed subcarriers (as in Hiperman), the
corresponding performance loss is calculated and the possi-
ble triplets are decided. It is noted that an enhanced super-
visor device could decide on the use of adaptive pilot modu-
lation in order to minimize estimation errors by maximizing
the received energy, since the pilot modulation may signif-
icantly affect the system performance. Figure 12 depicts the
effect of the pilot modulation method for the 2× 2 Alamouti
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Figure 11: Effect of number of subcarriers used for estimation pur-
poses on decision-directed, 2 × 2 ST-OFDM system, Alamouti en-
coded, loaded with 16-QAM.

ST-OFDM system including 8 pilots, 256 subcarriers, and as-
suming independent compensation per receiver antenna for
a realization of an SUI-4 channel. Three modulation meth-
ods are considered: randomly generated pilots (RGPs), or-
thogonal generated pilots (OGPs), and fixed pilot pattern
(FPP), where the same pilots are transmitted from any Tx
antenna. Thus, the selection of the pilot modulation scheme
is another parameter to be decided, since its affects system
performance in a significant way.

On the other hand, when the system protocol allows for
a variable number of pilot symbols, the optimization proce-
dure becomes more complex. After a training period of some
OFDM symbols, the mean CE can be roughly estimated.
Using this estimate and taking into account that the whole
OFDM symbol is loaded with the same QAM constellation,
it can be decided whether a specifically chosen constellation
is robust to the CE, so that the decision directed methods
(based on tentative decisions) are reliable. For the constella-
tions where the pilot-symbol use is necessary, the supervisor
has to select appropriately the position and the number of
pilot symbols.

6. TOWARDS A FLEXIBLE ARCHITECTURE

As already mentioned, a flexible transceiver must be
equipped with the appropriate robust solutions for all possi-
ble widely ranging environments/system configurations. To
target the universally best possible performance translates to
high complexity. A first step towards a generic flexible ar-
chitecture should be one that efficiently incorporates simple
tools in order to deliver not necessarily the best possible, but
an acceptable performance under disparate system/channel
environments.
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Figure 12: Effect of pilot modulation on 2 × 2 ST-OFDM system,
Alamouti encoded, loaded with 16-QAM (L0 = 8; 2 estimators).

The aforementioned CWSCE and TSD methods do be-
long to this category of flexible (partial) solutions. The ca-
pacity penalty for their use (compared to the optimal solu-
tions) has been shown herein to be small. Both require com-
mon feedback information (1 bit/carrier) and can be incor-
porated appropriately in a system able to work under a va-
riety of antenna configurations, when such limited feedback
information is available. When feedback information is not
available, CWSCE has the appropriate modules for mode se-
lection (algorithm 1) for the SISO case, while Alamouti can
be the choice for the MIMO case. Both STC schemes trans-
form the MIMO channel into an inner SISO one, allowing
for the use of AMC (mode selection) techniques designed for
SISO systems. In the Stingray system, as already explained,
the average ESNR at the demodulator is a sufficient met-
ric for choosing the Tx mode, whereas in WIND-FLEX the
uncoded BER is, respectively, used. Employing TMT tables
with the required uncoded BER and code-rate/constellation-
size sets for all the QoS operation modes in MIMO sys-
tems will increase the complexity, but it will permit seam-
less incorporation of both systems into one single common
architecture. The uncoded performance of the effective chan-
nel is thus the only metric that need be used for choosing
the Tx mode and can be computed for a variety of STC op-
tions. Furthermore, the fully parametric PHN and RFO algo-
rithms mentioned above are transparent to the selection of
the ST coding scheme and can provide the appropriate in-
formation about their performance under different environ-
ments/modes.

The overall block diagram of a proposed architecture
for the mode selection algorithm is given in Figure 13. It is
meant to be able to work for all systems employing one or
two antennas at the Tx/Rx.
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Figure 13: Block diagram of proposed algorithm for mode selection.

The related parameters are defined as follows:

(i) PN(xi), i = 1, . . . , l, is the number of needed pilots for
a specific PHN/RFO performance, when the operation
mode enables variable number of pilots;

(ii) ĤEF is the vector of the estimated effective channel
gains in the frequency domain (STC dependent);

(iii) PCE : pilot carrier excision (an enhancement of the
WSCE module which provides the pilot positions for a
given number of used pilots).

Here, WSCE is active only when the system is 1 × 1. On
all other Tx-Rx antenna choices, all subcarriers are assumed
“on.” When only a fixed number of pilot symbols are permit-
ted (e.g., when a specific protocol is used), the PHN/RFO es-
timator provides the VEE for each constellation choice to the
Tx power evaluation module. In a peer-to-peer communica-
tion system, where two flexible terminals could have the pos-
sibility of reconfiguring to a specific PHY, the number of pi-
lots can be allowed to change and the optimum solution de-
pends on the constellation size. The competitive-triplet eval-
uation must take this variable pilot number into account.
The supervisor module is responsible for this optimization
procedure. The best choice depends not only on the chan-
nel/system characteristics but also on the selected optimiza-
tion criteria such as maximizing the throughput, minimizing
the Tx power, and so on.

7. CONCLUSIONS

The scientific field of radio flexibility is growing in impor-
tance and appeal. Although still in fairly nascent form for
commercial use, flexible radio possesses attractive features
and attributes that require further research. The present pa-
per presents the flexibility concept, definition, and related
scenarios while, in parallel, explores in some depth the tool

of dynamic signal design for instantiating some of these at-
tributes in a specific application environment. Two design
approaches are presented (based on the WF and Stingray
projects) and the key algorithmic choices of both are pre-
sented and incorporated into one flexible design capable of
successfully operating in a variety of environments and sys-
tem configurations. It is evident that physical-layer flexi-
bility requires not only novel system architectures but also
new algorithms that efficiently utilize existing and/or new
modulation/coding techniques that can be adjusted to var-
ious environment and system scenarios, in order to offer
QoS close to that delivered by corresponding point-optimal
solutions.
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Special Issue on

Multimedia over Wireless Networks
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Scope

In recent years there has been a tremendous increase in de-
mand for multimedia delivered over wireless networks. The
design and capabilities of the mobile devices and the services
being offered reflect the increase in multimedia usage in the
wireless setting. Applications that are in the process of be-
coming essential to users include video telephony, gaming, or
TV broadcasting. This trend creates great opportunities for
identifying new wireless multimedia applications, and for de-
veloping advanced systems and algorithms to support these
applications. Given the nature of the channel and of the mo-
bile devices, issues such as scalability, error resiliency, and en-
ergy efficiency are of great importance in applications involv-
ing multimedia transmission over wireless networks.

The papers in this issue will focus on state-of-the-art re-
search on all aspects of wireless multimedia communica-
tions. Papers showing significant contributions are solicited
on topics including but are not limited to:

• Error resilience and error concealment algorithms
• Rate control for wireless multimedia coding
• Scalable coding and transmission
• Joint source-channel coding
• Joint optimization of power consumption and rate-

distortion performance
• Wireless multimedia traffic modeling
• Wireless multimedia streaming
• Wireless multimedia coding
• QoS for wireless multimedia applications
• Distributed multimedia coding
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Special Issue on

Cognitive Radio and Dynamic Spectrum
Sharing Systems

Call for Papers
Aims and Scope of the Special Issue

The ever-growing need for wireless communications which
provide high data rates entails a substantial demand for new
spectral resources and more flexible and efficient use of ex-
isting resources. Several measurement campaigns conducted
in the recent years show that frequency spectrum in the
range 30 MHz-3 GHz is most of the time unused leading to
low average occupancy rates and motivating to allow more
flexible spectrum use. Promising solution to exploit spec-
trum in a flexible way is via cognitive radio and dynamic
spectrum sharing systems which use innovative spectrum
management and allow different systems to share the same
frequency band. Significant potential improvements offered
with such approaches and also positive view from regulatory
bodies have led to exploding interest in this field recently.
However, such paradigm shift introduces many new design
challenges that have to be solved in order to enable proper
functioning of the spectrum sharing and cognitive radio sys-
tems. Recent research efforts include considerations of dif-
ferent physical layer technologies, spectrum sensing, coexis-
tence mechanisms between legacy and secondary users, and
shared medium access among many secondary users.

The objective of this special issue is to showcase the most
recent developments and research in this field, as well as to
enhance its state-of-the-art. Original and tutorial articles are
solicited in all aspects of cognitive radio and spectrum shar-
ing including system and network protocol design, enabling
technologies, theoretical studies, practical applications, and
experimental prototypes.

Topics of Interest:

Topics of interest include, but are not limited to:

• Spectrum measurements and current usage
• Spectrum regulations
• Spectrum sensing and awareness techniques
• Dynamic spectrum management

• Capacity and achievable data rates in cognitive radio
• Multiuser spectrum sharing:

• Priority resource allocation
• Cooperation and competition of users
• Auction-based spectrum sharing

• Coexistence of spectrum sharing and legacy narrow-
band systems

• Physical layer design of spectrum sharing systems:
• OFDM, OQAM, UWB, CDMA, SDR
• MIMO component in spectrum sharing

• Applications of cognitive radio & spectrum sharing
• Standardization of cognitive radio and spectrum

sharing: IEEE P1900, IEEE 802.22, ITU-R activities
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The International Journal of Antenna and Propagation
(IJAP) is publishing a special issue on radio frequency identi-
fication (RFID) technologies. RFID systems are used for elec-
tronically identifying, locating, and tracking products, ani-
mals, vehicles. Passive tags (transponders) do not have a bat-
tery and have limited range, typically about one meter. Ac-
tive tag systems have a power source and much longer range.
Current RFID research and development include theory, an-
tenna design, wireless communication, networking, system-
on-chip IC development, database management, propaga-
tion theory, signal processing, embedded system design, and
more.

This special issue is to present new RFID-related tech-
niques to address theoretical and technical implementation
challenges

Papers that reflect the current and future methods are so-
licited.

Topics of interest include (but are not limited to):

• Reader and tag antennas
• Metallic object tag antenna design
• RF- and antenna-related techniques to improve the

recognition rate of RFID
• Miniaturization of tag antenna
• Reading range for different antennas
• RFID measurements and modeling
• Printable tag design and analysis
• Active and passive tag antennas
• Location technologies
• RFID near-field and far-field analyses
• RFID impedance matching and related topics
• Smart label tag antennas
• RFID and USN system (ubiquitous sensor network)
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Special Issue on

Ultra-Wideband Antennas

Call for Papers
“Over the last few years much has been published about the
principles and applications of electromagnetic waves with
large relative bandwidth, or nonsinusoidal waves for short.
The next step is the development of the technology for the
implementation of these applications. It is generally agreed
that the antennas pose the most difficult technological prob-
lem.”

Henning F. Harmuth,

Antennas and Waveguides for Nonsinusoidal Waves,

Academic Press, New York, 1984, p. xi.

More than twenty years after Harmuth’s observations on
the difficulties posed by UWB antenna design and five years
after the FCC authorized ultra-wideband (UWB) systems,
a variety of UWB products is nearing wide-scale commer-
cialization. Antenna designers and engineers have solved the
UWB antenna problem in many ways, yielding compact an-
tennas well-suited for a variety of applications. Unlike in pre-
vious decades when UWB antenna progress came in fits and
spurts, today there is an active and growing community of
UWB antenna designers sharing their insights and designs
at professional conferences, trade shows, and in the pages
of technical journals. The time is ripe for a special issue on
UWB antennas that captures this progress and provides in-
sight to where UWB antenna design will go in the future.

UWB systems have opened up new dimensions of antenna
design. Antennas have become an organic part of RF systems,
providing filtering and other custom-designed frequency-
dependent properties. The wide bandwidths of UWB anten-
nas present new challenges for design, simulation, and mod-
eling. Optimizing UWB antennas to meet the demands of
UWB propagation channels is similarly challenging. And as
always, consumer applications demand compact and aesthet-
ically pleasing designs that must nevertheless perform. De-
signers are meeting these challenges with novel antenna de-
signs and novel materials. Designers are also using concepts
like polarization diversity, directivity arrays, and electric-
magnetic element combinations.

The goal of this special issue is to present the state of the
art in UWB antenna engineering and to address the many
ways in which UWB antenna designers are understanding
and meeting the challenges of UWB design. Topics of interest
include (but are by no means limited to):

• UWB antennas, including analysis, design, develop-
ment, measurement, and testing

• Novel types of UWB antennas
• Adaptations of well-known UWB antennas that yield

novel results
• Novel materials for use with UWB antennas
• Applications of UWB antennas
• Design and simulation techniques for UWB antennas

and UWB propagation
• Safety and public policy related to UWB antennas and

propagation
• UWB propagation channels
• Measurement methods for UWB antennas and propa-

gation
• Challenges and anticipated needs in UWB antennas

and propagation research and development
• History of UWB antennas and their development.

Authors should follow International Journal of Antennas
and Propagation manuscript format described at the jour-
nal site http://www.hindawi.com/journals/ijap/. Prospective
authors should submit an electronic copy of their com-
plete manuscript through International Journal of An-
tennas and Propagation’s Manuscript Tracking System at
http://www.hindawi.com/mts/, according to the following
timetable:
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UWB Communication Systems—A 
Comprehensive Overview

Edited by: Andreas Molisch, Ian Oppermann, Maria-Gabriella Di Benedetto, 
Domenico Porcino, Christian Politano, and Thomas Kaiser

Ultra-wideband (UWB) communication systems offer 
an unprecedented opportunity to impact the future 
communication world.

The enormous available bandwidth, the wide scope of the 
data rate/range trade-off, as well as the potential for very-low-
cost operation leading to pervasive usage, all present a unique 
opportunity for UWB systems to impact the way people and 
intelligent machines communicate and interact with their 
environment.

The aim of this book is to provide an overview of the state of the 
art of UWB systems from theory to applications.

Due to the rapid progress of multidisciplinary UWB research, 
such an overview can only be achieved by combining the areas 
of expertise of several scientists in the field.

More than 30 leading UWB researchers and practitioners have 
contributed to this book covering the major topics relevant 
to UWB. These topics include UWB signal processing, UWB 
channel measurement and modeling, higher-layer protocol 
issues, spatial aspects of UWB signaling, UWB regulation and 

standardization, implementation issues, and UWB applications as well as positioning.

The book is targeted at advanced academic researchers, wireless designers, and graduate students wishing to 
greatly enhance their knowledge of all aspects of UWB systems.
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The EURASIP Book Series on Signal Processing and Communications publishes monographs, 
edited volumes, and textbooks on Signal Processing and Communications. For more information 
about the series please visit: http://hindawi.com/books/spc/about.html

For any inquiries on how to order this title please contact books.orders@hindawi.com
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The EURASIP Book Series on Signal Processing and Communications publishes monographs, 
edited volumes, and textbooks on Signal Processing and Communications. For more information 
about the series please visit: http://hindawi.com/books/spc/about.html

For any inquiries on how to order this title please contact books.orders@hindawi.com

SMART ANTENNAS—STATE OF THE ART 

Edited by: Thomas Kaiser, André Bourdoux, Holger Boche, 
Javier Rodríguez Fonollosa, Jørgen Bach Andersen, and Wolfgang Utschick

Smart Antennas—State of the Art brings together the 
broad expertise of 41 European experts in smart 
antennas. They provide a comprehensive review and 

an extensive analysis of the recent progress and new results 
generated during the last years in almost all fields of smart 
antennas and MIMO (multiple input multiple output) 
transmission. The following represents a summarized table 
of content.

Receiver: space-time processing, antenna combining, 
reduced rank processing, robust beamforming, subspace 
methods, synchronization, equalization, multiuser detection, 
iterative methods

Channel: propagation, measurements and sounding, 
modeling, channel estimation, direction-of-arrival 
estimation, subscriber location estimation

Transmitter: space-time block coding, channel side 
information, unified design of linear transceivers, ill-
conditioned channels, MIMO-MAC srategies

Network Theory: channel capacity, network capacity, 
multihop networks

Technology: antenna design, transceivers, demonstrators and testbeds, future air interfaces

Applications and Systems: 3G system and link level aspects, MIMO HSDPA, MIMO-WLAN/UMTS 
implementation issues

This book serves as a reference for scientists and engineers who need to be aware of the leading edge research 
in multiple-antenna communications, an essential technology for emerging broadband wireless systems.
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           The International ITG / 
IEEE Workshop on Smart Antennas 
                    WSA 2007 
           February 26-27, 2007 
                     Vienna 

Call for Papers 
The International ITG / IEEE Workshop on Smart Antennas WSA 2007 provides a 
forum for presentation of the most recent research on smart antennas. The objective is 
t o 
continue, accelerate, and broaden the momentum already gained with a series of ITG 
Workshops held since 1996: Munich and Zurich’96, Vienna and Kaiserslautern’97, 
Karlsruhe’ 98, Stuttgart’99, Ilmenau’01, Munich’04, Duisburg’05, and Ulm’06. This call 
for papers intends to solicit contribu-tions on latest research of this key technology for 
wireless communication systems.                                            . 

Workshop topics include, but are not limited to: 

- Antennas for beamforming and diversity    - Multicarrier MIMO 
- Channel measurements       - Multiuser MIMO 
- Spatial channel modeling       - Cooperative and sensor networks 
- Beamforming         - Crosslayer optimisation 
- Diversity concepts        - Radio resource management 
- Space-time processing       - Cellular systems 
- Space-time codes        - Link, system and network level simulations 
- MIMO Systems        - Hard- and software implementation issues 

There will be oral as well as poster presentations. 
The workshop will be jointly organized by the Institute of Communications and Radio 
Frequency at Vienna University of Technology and the ftw. Telecommunications Research 
Center Vienna in cooperation with the VDE, ÖVE, and the IEEE on February 26-27, 2007 in 
Vienna, Austria 

Organizers and Workshop Chairs 

Markus Rupp, 
E-Mail: mrupp@nt.tuwien.ac.at 
Christoph Mecklenbräuker, 
E-Mail: cfm@ftw.at 
Information about the workshop can soon be found at: http://www.ftw.at/ 

Technical program committee  

Jørgen Bach-Andersen David Gesbert Michael Meurer Werner Teich 
Sergio Barbarossa Martin Haardt Werner Mohr Reiner Thomä 
Ezio Biglieri Dirk Heberling Ralf Müller Wolfgang Utschick 
Holger Boche Ari Hottinen Josef A. Nossek Alle-Jan van der 

Veen 
Helmut Bölcskei Thomas Kaiser Björn Ottersten Mats Viberg 
Ernst Bonek Anja Klein Steffen Paul Emanuele Viterbo 
Andreas Czylwik Miguel Lagunas Ana I. Pérez-Neira Tobias Weber 
Armin Dekorsy Geert Leus Arpad L. Scholtz Joachim Wehinger 
Gerhard Fettweis Jürgen Lindner Nikos Sidiropoulos Werner Wiesbeck 
Bernard H. Fleury Gerald Matz Klaus Solbach Thomas Zemen 
Javier Fonollosa Utz Martin Michael Tangemann Abdelhak Zoubir 
Alex Gershman Tadashi 
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CALL FOR PAPERS
3rd IET/EURASIP Conference on

DSPenabledRadio
Glasgow, Scotland, UK

13th/14th September 2007
http://www.DSPenabledRadio.org

In the past decade, digital signal processing (DSP) algorithms and architectures for baseband
processing have brought applications such as 3G mobile communications and wireless LAN to
mass markets. Since then, further progress in DAC and ADC technology has permitted DSP to be
applied at IF sampling rates up to several 100 MHz, which has opened up a large range of advanced
DSP algorithms to be deployed for – potentially reconfigurable – communications system functions
such as modulation, synchronisation, equalisation, coding, and many more. This development
is expected to continue, and opportunities such as software defined radio (SDR) architectures
forming the basis for cognitive radios for improved spectrum efficiency and reliable and ubiquitous
communication are likely to become reality within the next couple of years.

This 2 day event forms a continuation of two previous conferences of identical title held in Liv-
ingston, Scotland, in 2003, and in Southampton in 2005, which were each attended by more than
120 international researchers and industrialist. Both events were co-sponsored by the Institution
of Engineering and Technology (IET — formerly the Institution of Electrical Engineers, IEE) and
the European Association for Signal Processing (EURASIP). This third conference IET/EURASIP
will comprise of an invited keynote speaker, a number of invited contributions on key topics, oral
presentations, poster sessions, and a small industrial exhibition for companies demonstrating the
latest hardware and software for DSP enabled radio. Prospective authors are invited to submit
original contributions on all aspects of DSP enable radio, including, but not limited to:

• hardware platforms • FPGA architectures • algorithms and architecture
• mixed signal techniques • system-on-chip • digital up/downconversion
• application case studies • rapid prototyping • standards and inter-operability
• sample rate conversion • cognitive radio • emerging standards: WiMAX etc
• RF and IF processing • power control • synchronisation and equalisation
• ultra-wideband radio • RF linearisation • equalisation / channel estimation
• standards, IEEE802.1x • Tx/Rx beamforming • beamforming/smart antennas
• SDR implementation • MIMO systems • wireless sensor / ad-hoc networks

Papers will be reviewed on the basis of a two page extended abstract of sufficient detail to permit
reasonable evaluation. The deadline for submission is June 29, 2007, with notification of decision
by July 20, 2007. Accepted papers will be edited into a bound digest of the event, available on CD,
and be included in IEEExplore. The cover page of the summary should include paper title, names
of authors and their affiliation, as well as the complete address, telephone numbers and e-mail of
the corresponding author.

Detailed information on the extended abstract and paper submission, technical program, accommo-
dation, and travel will be posted on the conference web site http://www.DSPenabledRadio.org.

Bob Stewart, General Chair
Stephan Weiss and Eugen Pfann, Technical Co-Chairs
Dept. of Electronic & Electrical Engineering
University of Strathclyde
Glasgow G1 1XW, Scotland, UK
{r.stewart,s.weiss,e.pfann}@eee.strath.ac.uk
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  Otto Koudelka, TU Graz
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  Andreas Springer, U. of Linz
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Internet page
http://rfid07.ftw.at

Important Dates
  Paper submission 31. May 2007
  Author notification 02. July 2007
  Final manuscript due 19. July 2007

Workshop topics include, but are not limited to:
  Electromagnetic field measurements
  Antenna design
  Multiple antenna systems
  Modulation schemes for RFID
  Security and privacy issues
  Link, system, and network level simulations
  Hardware and software implementation issues
  Inductive coupling for DC supply
  Multi-frequency and broadband tags
  Smart tags, programmable tags, and embedded systems
  Sensor tags and RFID for asset tracking and localization
  Advances in passive long range RFID technology
  Manufacturing processes for RFID tags
  Applications and industrial experience

The First International
EURASIP Workshop on RFID Technology

24 - 25 September 2007, Vienna, Austria

Call for Papers
The first international EURASIP workshop on RFID technology will provide a premium forum for presentation of the 
most recent research in this new technology. The objective is to continue, accelerate, and broaden the momentum 
already gained in this field. This call for papers intends to solicit contributions on the latest research of this new 
technology for wireless communication systems, spanning from the individual tag to entire systems based on RFIDs.

Submission Guidelines
Authors are encouraged to submit original, unpublished work 
for presentation at the workshop in the form of posters and 
full papers. Acceptance shall be based on an extended 
abstract of two pages in the standard IEEE conference format.

Workshop Venue
The workshop will be held in Vienna, 
Austria, at the Telecommunications 
Research Center Vienna (ftw.).
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MobiMedia 
Third International Mobile Multimedia Communications Conference 

(formerly MSAN) 
August 27-29, 2007: Nafpaktos, Greece 

 
 
 
Scope: 
The successful development of multimedia services and applications in mobile environments 
requires adopting an interdisciplinary approach where both multimedia and networking issues are 
addressed jointly. Multimedia semantic characteristics, Human Interpretation of audiovisual 
information, extraction and usage of semantic information, coding standards and its interaction 
with networking, mobility and security protocols are research issues that need to be carefully 
examined when proposing new solutions. Many are the applications that will be enabled by the 
new standards for mobile networking, such as triple services for mobile networks, digital 
television, video streaming, interactive gaming, navigation services, context aware services, and 
immersive communications in virtual environments. The efficient delivery of multimedia 
applications and services over emerging diverse and heterogeneous wireless networks is a 
challenging research objective. The research effort for the 3G/4G vision of interworking among 
heterogeneous technologies to achieve multimedia session continuity, retain multimedia QoS 
characteristics etc., amplifies the need to evaluate the conditions and restrictions under which 
delivery of such services can be accomplished.  
Within this scope, MobiMedia is intended to provide a unique international forum for researchers 
from industry and academia, working in multimedia coding, and mobile networking fields to 
study new applications, solutions, and standards. Original unpublished contributions are solicited 
that can improve the knowledge and practice in the integrated design of efficient technologies 
and the relevant provision of advanced mobile multimedia applications.  
 
Technical program: 
The conference will also include invited panels to facilitate for exchanging ideas and discussion, 
and specific sessions and workshops on focused interest areas. Submissions of proposals on 
workshops and special sessions on emerging topics are invited. Please submit proposals to 
Technical Program Chairs and Workshop Chairs.  
 
Paper submission and publication: 
Mobimedia 2007 invites manuscripts that present original materials not previously published in, 
or currently under review by, another conference or journal. Submissions should be full-length 
papers of up to 7 pages or short papers of up to 4 pages (including all figures and references) 
formatted according to http://www.acm.org/sigs/pubs/proceed/template.html. Full-length papers 
should report on completed work and will be considered for oral presentations. Short papers 
should report on work in progress or discuss open problems, and will be considered for poster 
presentations. A separate abstract of no longer than 200 words should be submitted as well. 
Submissions will be judged by their originality, significance, interest, clarity, relevance, and 
correctness.  Papers will be submitted by electronic submission through COCUS system: 
http://cocus.create-net.it. All papers should be electronically submitted in Adobe PDF format.  
 
Workshops: 
Proposals for half-day workshops to be held in conjunction with the conference are solicited. A 
maximum of 2 pages should be submitted which include the workshop name, its scope and a list 
of topic of interests. Proposals should be submitted to both the Workshop Chairs. 
 
Important dates: 
- Workshop proposals: January 20, 2007 
- Special session proposals: March 15, 2007 
- Deadline Submission: April 30, 2007 
- Notification of acceptance: June 8, 2007 
- Submission of camera-ready papers: July 2, 2007 
 
Students award and grants: 
Five student prizes will be awarded to the best papers authored by full time students as first 
author.  

CCAALLLL  FFOORR  PPAAPPEERRSS  

http://www.acm.org/sigs/pubs/proceed/template.html
http://cocus.create-net.it/

